
Towards Non-Volatile Memory Wear-Leveling In
(Timing)-Critical Systems
Christian Hakert, Kay Heider, Junjie Shi, Jian-Jia Chen

TU Dortmund University, Germany

Abstract—Addressing the lifetime challenges of emerging non-
volatile memory through wear-leveling has been widely discussed
in the literature, with many approaches focusing on practical
implementations. Most efforts prioritize extending system lifetime
by minimizing the overhead of wear-leveling techniques. How-
ever, in safety-critical and time-sensitive systems, the emphasis
shifts from minimizing overheads to ensuring system reliability.
In such systems, guaranteeing that memory will not degrade or
wear out under any conditions throughout the targeted lifetime
becomes the primary objective of wear-leveling.

In this paper, we address this previously overlooked challenge
by ensuring lifetime feasibility for real-time systems. To this end,
we extend the classical real-time task model by introducing a new
parameter: worst-case wear-out. Using this extended task model,
we develop a wear-leveling scheme that ensures that memory
cells do not exceed their endurance limits during the lifetime.
Additionally, we compute the required number of memory
replicas necessary to meet the system’s lifetime requirements.

Index Terms—Non-Volatile Memory, Real-Time Systems,
Wear-Leveling

I. INTRODUCTION

Emerging non-volatile memory (NVM) technologies, such
as phase change memory (PCM) and ferroelectric RAM
(FeRAM), are increasingly being integrated into off-the-shelf
microcontrollers, including the Stellar MCUs from STMi-
croelectronics and the MSP430FRXXX series from Texas
Instruments. Especially in the design of efficient timing and
safety critical systems, these emerging technologies provide
favorable properties, such as fast hibernation and large power
saving potential [4]. A key challenge for NVM-based systems
lies in the limited endurance of these memory technologies,
which can be as low as 108 write cycles [1]. Wear-leveling is a
commonly used technique to address this issue by redistribut-
ing memory accesses to ensure that memory cells experience
uniform wear. While this technique effectively prolongs the
memory’s lifespan, it introduces time overhead and must be
performed in a timely manner to prevent premature wear-out
of individual cells. In the context of critical real-time systems
where critical tasks are deployed to emerging memory due
to the aforementioned advantages, it is essential not only to
ensure timing feasibility, where all jobs meet their deadlines,
but also lifetime feasibility, meaning the system can operate
within its targeted lifetime without exhausting the endurance
of any memory cell.

To achieve both timing and lifetime feasibility in wear-
leveling, we define the memory behavior of a task using a
worst-case wear-out (WCWO) metric for each job, analogous
to the worst-case execution time (WCET). We introduce

migration operations, which preemptively relocate a task’s
memory to a different physical location before the execution
of a new job. The overhead incurred by these migration
operations is incorporated as an additional WCET component
for the task. The selection of migration locations is determined
by a wear-leveling algorithm that employs two key strategies.
First, it ensures that different tasks are cyclically allocated
to memory locations, achieving a task-specific average wear-
out for each memory block. Second, it incorporates additional
memory replicas to ensure that each memory cell can endure
until the system’s lifetime is reached. The required number
of replicas can be calculated during system deployment by
analyzing the task-specific average wear-out. This approach
guarantees that migration operations will not compromise
the system’s timing feasibility, while ensuring that memory
locations are uniformly and progressively worn out, resulting
in a lifetime-feasible system.

To the best of our knowledge, we present the first approach
that integrates wear-leveling to ensure both lifetime and timing
feasibility in critical real-time systems. Our key contributions
are summarized as follows:

• We introduce an extended task model that incorporates
the WCWO for each job, analogous to the WCET.

• We propose a wear-leveling strategy that guarantees both
lifetime and timing feasibility, while optimizing the re-
quired number of memory replicas by leveraging task set-
specific properties.

• We provide a comprehensive evaluation of the proposed
wear-leveling scheme through both simulation-based and
measurement-based methods.

II. RELATED WORK

While wear-leveling of non-volatile memories is covered
by a wide range of practical approaches in the literature,
where the focus is put to different technology assumptions
and different specialized approaches, considering the lifetime
issue from a systematic perspective on giving guarantees and
guaranteeing the lifetime feasibility of a system is widely
lacking. General approaches aim for efficient wear-leveling
and the reduction of overheads in general [6], [7]. Hu et
al. especially focus on the efficiency of software based wear-
leveling mechanisms [6]. Trading off between software-based
wear-leveling and hardware-supported wear-leveling, espe-
cially with a focus on the overheads, is a widely discussed
topic. Hakert et al. introduce a comprehensive methodology for
software-based wear-leveling [5]. Specific approaches target to
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aim for better efficiency by exploiting the stack as a special
software construct [11].

An approach for formalization of wear-leveling is given by
Onodera and Shibuya [10], where the lacking formalism of
wear-leveling in the literature is picked up and a rigorous ap-
proach for theoretical lifetime analysis is followed. However,
the authors do not lay a dedicated focus on real-time systems
and the timing feasibility. Lee et al. focus on wear-leveling in
the real-time operating-system FreeRTOS, where they propose
a safe online stack migration scheme [8]. Although this is a
crucially important practical implementation aspect to wear-
leveling in real-time systems, the consideration about lifetime
feasibility, as proposed by this paper, are not picked up.

III. SYSTEM MODEL

This section introduces the memory lifetime model, fol-
lowed by an explanation of the lifetime requirements for real-
time systems.

A. Memory Lifetime Model

We consider a system equipped with main memory im-
plemented using a NVM technology, which is characterized
by limited cell endurance. Specifically, each memory cell
has a finite number of write cycles it can endure before
becoming unreliable. In the absence of wear-leveling or other
mechanisms, the system is assumed to become not operable
once the first memory cell fails. Therefore, we define a system-
wide parameter, i.e., E, representing the endurance of a single
memory cell. The system’s lifetime is defined as the period
during which no memory cell exceeds E write operations. The
goal of lifetime extension is to prolong the system’s operation
until this threshold is reached.

In addition, the system is assumed to include a small amount
of conventional memory, that is used to store centralized state
information required for the lifetime extension mechanism.

B. Characterization of Lifetime Requirements

To take memory lifetime into considerations for a real-time
system, we extend the classic periodic real-time task model
by introducing an additional parameter, the worst-case wear-
out (WCWO). Accordingly, we denote a periodic task τi by
τi = (ϕi, Ci, Ti, Di,WCWOi), where ϕi is the phase, Ci is the
(worst-case) execution time, Ti is the period, Di is the relative
deadline and WCWOi is the worst-case wear-out. In this work,
we limit our focus to strictly periodic tasks. The worst-case
wear-out denotes the maximum number of write operations
to any memory location during the execution of a single job.
Similar to the worst-case execution time, this parameter can
be determined through measurement-based approaches.

For measurement-based estimation, memory instrumenta-
tion tools such as Dynamorio [3] or Valgrind [9] can be
employed to track and record individual memory accesses
to specific locations during task execution. Summing these
accesses per location provides an estimate of the worst-case
wear-out, which may be improved by applying a safety margin.

Alternatively, as with execution time, the worst-case wear-
out can be safely upper-bounded using static program analysis.
In this approach, the control flow graph of the task is explored,
and predictions are made regarding the target address of each
memory access. If precise predictions cannot be made safely,
memory accesses are pessimistically assumed to potentially
target any location associated with the task. This allows the
determination of the worst-case path through the control flow
graph, yielding a safe upper bound for the worst-case wear-
out. Tools like BAP [2] can assist in static program analysis by
providing more accurate predictions of memory access targets,
thus tightening the upper bound.

We assume the main memory to consist of n fragments,
denoted as MF = (mf0, ...,mfn−1), to which any task can
be freely mapped. Additionally, we assume that tasks only
share read-only memory1. A task-to-memory mapping func-
tion TM : T × L → MF can be employed, where T =
(τ0, ..., τm−1) represents the set of m tasks in the system, and
L = (t0, ..., tℓ−1) denotes the number of system ticks until
the system’s lifetime expiry. This mapping can change at any
tick; however, any changes affect only the next released job.
This means, the actual migration of a task is executed at the
next release after the corresponding change of the mapping.
Additionally, we denote Jk,j as the j-th job of task τk that is
released at tick R(Jk,j) = ϕk + Tk · (j − 1).

For notational brevity, let

Gγ,i =

{
WCWOk, if TM(τk, tγ) = mfi ∧ γ = R(Jk,j)

0, otherwise
(1)

Then, the accumulated worst-case wear-out AWOi for each
memory fragment i can be computed as follows:

AWOi =

ℓ−1∑
γ=0

Gγ,i (2)

Following the assumption that the system becomes unusable
once the first memory cell wears out, the memory fragment
with the maximum accumulated wear-out is of critical interest
and defines the global memory wear-out (GWO):

GWO = max(AWO0, ...,AWOn−1) (3)

We denote the system to be lifetime feasible for a given
lifetime ℓ when GWO ≤ E. The correct choice of TM is
the key parameter to achieve lifetime feasibility for a targeted
system lifetime ℓ. The process for deriving a suitable TM is
explained in the following section.

IV. WEAR-LEVELING

The behavior of tasks in a system can significantly im-
pact memory endurance, potentially causing memory cells to
wear out prematurely, even before the system reaches its tar-
geted lifetime. For example, consider a phase-change memory
(PCM)-based system with a cell endurance of 108 write cycles

1This can be achieved straightforwardly by following the principle of queue-
based communication, thereby avoiding written shared memory.
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[1], and a task with a period of 10ms that performs a worst-
case of 10 memory write accesses per job. In this scenario,
the maximum feasible lifetime without wear-leveling, where
TM remains constant throughout the system’s lifetime, would
be approximately one day, i.e., 108

10·100·60·60·24 ≈ 1 day. Such a
lifetime falls far short of the intended lifespan for many critical
systems. Consequently, the task-to-memory mapping function
TM must be adjusted to ensure the system remains lifetime
feasible for a given target lifetime.

In this work, we propose a wear-leveling scheme to derive
a suitable TM by utilizing the following strategies: 1) spare
memory is employed to remap tasks to unworn memory
regions (n ≫ m), and 2) task assignments are shuffled in
such a way that memory fragments experience uniform worst-
case wear-out. For brevity and simplicity, we assume that the
targeted lifetime, ℓ, is an integer multiple of the hyper-period
of the task set, denoted as HP, and that ℓ is also a common
integer multiple of the worst-case wear-out across all tasks.

Our wear-leveling scheme modifies the task-to-memory
mapping at the frequency of the hyper-period, ensuring that
each task releases the same number of jobs and at least one job
between two mapping changes. At each change, all tasks are
relocated to the next memory replica in a wraparound fashion.
Within the replicas, tasks are also mapped with an increasing
offset, maintaining the wraparound semantic. Consequently,
when r denotes the number of memory replicas, after r · m
mapping changes, each task will have been mapped to each
memory fragment exactly once for the duration of one hyper-
period. Figure 1 illustrates this remapping process for two
tasks, each with two memory segments per replica, and three
replicas. When the system lifetime ℓ is an integer multiple of
HP·r·m, each memory fragment experiences the same number
of executed jobs for each task over the entire system lifetime.
It should be noted that, due to larger hyper-periods, the lifetime
requirement of the system may be limited to an absolutely high
scale. The wear-leveling algorithm potentially can be modified
in order to operate on a higher frequency than the hyper-
period. This, however, will not ensure the same number of
job invocations between task migrations and potentially has
to include a more pessimistic estimation on memory segment
ages. A tight integration with the scheduling algorithm can
potentially help to make these estimations less pessimistic.

We define n = r · m, where r represents the number of
memory replicas and m is the number of memory fragments
required by the task set. Then, the wear-leveling strategy can
be described by:

TM(τi, tj) = (4){ ((
(TM(τi, tj−1) + 1)%m

)
+m

)
%n, if j%HP = 0

TM(τi, tj−1), otherwise

where % is the mod operation.
This strategy ensures that tasks are systematically remapped

to different memory fragments, thus distributing wear uni-
formly across the available memory space and extending the
overall system lifetime.

replica 0 replica 1 replica 2

...mf0 mf1 mf2 mf3 mf4 mf5

τ0

τ1

Fig. 1. Wear-Leveling Scheme Illustration

For each task τi, the worst-case wear-out for one hyper-
period is given by HP

Ti
· WCWOi. Under the described wear-

leveling strategy, each memory fragment is subject to a pro-
portional share of task execution, and the wear-out of each
memory fragment can be expressed as:

AWOi =
1

r ·m
· ℓ

HP
·
m−1∑
j=0

HP
Tj

· WCWOj +
ℓ

HP · r
(5)

=
ℓ

r ·m
·
m−1∑
j=0

1

Tj
· WCWOj +

ℓ

HP · r
(6)

In these equations, ℓ
HP·r accounts for the memory write

overhead required to migrate each task fragment to the next
location during a mapping change. The normalized worst-case
wear-out of a task τi is defined as NEWi =

1
Ti
·WCWOi. Under

perfect wear-leveling, each memory fragment should experi-
ence the same average normalized wear-out across all tasks,

denoted as MNEW = 1
m ·

m∑
i=0

NEWi. As shown in Equation (6),

the proposed wear-leveling strategy achieves this balanced
distribution of wear across all memory fragments. Since all
fragments are subject to the same MNEW after wear-leveling,
the endurance limit E applies equally to all fragments:

E =
ℓ

r
· MNEW +

ℓ

HP · r
(7)

⇔ r =
ℓ

E
· (MNEW +

1

HP
) (8)

Equation (8) provides the formula to calculate the required
number of replicas r to achieve the targeted system lifetime ℓ,
considering the cell endurance E, the task set-specific mean
normalized wear-out MNEW, and the hyper-period HP.

V. MIGRATION OVERHEAD

In the previously described wear-leveling algorithm, the
overhead associated with migrating a task to a different mem-
ory fragment is included in the total number of memory writes.
However, this migration process also incurs execution time
overhead, which must be considered to ensure the system’s
timing feasibility. This overhead can be safely upper-bounded
and added to the WCET of each task. Since migrations occur
only once per hyper-period, and each task executes at least one
job during this period, the overhead is adequately accounted
for. The upper bound on migration overhead is determined by
the worst-case execution time required to copy the task-related
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data to a new memory location, which depends on the size of
the memory fragments and hardware-specific parameters.

We evaluated the migration overhead in FreeRTOS by
measuring the time required to copy the task control block
(TCB) data structure and the stack memory associated with
a task. To correctly migrate a task’s stack to a new memory
location, it is necessary to adjust any materialized addresses
on the stack that point to memory within the stack itself.
Specifically, if a value on the stack references an address in
the old stack memory, this value must be updated to reflect
the new stack location.

In addition to migrating the stack, the task’s TCB must also
be copied. In FreeRTOS, the TCBs of all configured tasks are
managed in doubly linked lists based on their current state. For
instance, the TCBs of tasks that are ready for execution are
referenced in a global ready list. Whenever a TCB is migrated
to a new memory location, the corresponding list that owns
the TCB must be updated to reflect the new location.

To synchronize task migration with task execution, we
introduce a migration flag in the TCB, indicating a pending
migration. When the task is released for its subsequent job,
the migration process is triggered, ensuring seamless task
execution in the new memory location.

We experimentally evaluate the time required to migrate a
task on an ESP32-S3 microcontroller, configured with a single
core running at 240MHz. The FreeRTOS port provided by the
manufacturer is utilized for this evaluation. The system tick
period is set to 1ms. A single task is created with a period
of 3 ticks and an execution time of ≈ 1 tick. The stack sizes
are varied between 2KiB and 64KiB, while the TCB size
remains fixed at 348B. In total, the task is migrated 10 times,
and the maximum migration time is recorded alongside the
maximum task runtime.

Figure 2 presents the maximum migration time (red crosses)
and the maximum runtime of the task (green triangles) for
each memory configuration. Furthermore, a linear regression
model of the migration time is shown as a blue line. The x-
axis represents the total amount of memory copied during each
migration, while the y-axis indicates the elapsed time.

The results demonstrate that migration time increases lin-
early with the amount of copied memory, starting at ≈ 50 µs
for 2396B, and up to ≈ 1250 µs for 65 884B. The data reveals
that migration overhead becomes significant, especially for
larger stack sizes. In particular, at 53 596B, the migration
time exceeds the runtime of the actual task. This suggests the
conclusion that the overhead of the proposed wear-leveling
method carefully has to be considered specifically for an ap-
plication set and hardware platform. Under some applications,
only minimal overhead has to be sacrificed for proper lifetime
extension, for other application, the majority of potential
system utilization may have to be sacrificed.

To provide a measurement-based approximation of the
WCET for the migration process, we fit a linear regression
model to the recorded data. A safety margin of 10% is applied
to both the slope and intercept to obtain a conservative upper
bound for the migration process across all observed data
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Fig. 2. Migration Time Overhead

points. The migration overhead in microseconds, based on the
amount of memory copied s, is described by the following
formula:

O = 0.021 · s+ 6.452 (9)

Using this model, the WCET of a task τi, including the
migration overhead, can be expressed as C ′

i = Ci+O. Please
note that this approach is conservative, as the migration occurs
only once per hyper-period, rather than for every job released
by the task.

VI. SIMULATION STUDY

To provide intuition for the previously introduced wear-
leveling concept with memory replicas, we conduct a simula-
tion study and illustrate the resulting parameters for simulated
task sets. For an exploratory analysis, we randomly generate
task sets where the periods are uniformly distributed between
10 and 15 ticks, and the WCET is between 1 and a maximum
of 1

5 th of the period. Additionally, the worst-case wear-out for
each task is randomly sampled between 5 and 10. We generate
tasks such that the total system utilization remains below
100%. We assume a cell endurance of 108 write accesses and
a targeted system lifetime of 10 years without interruption.

For each task set generated according to this procedure, we
plot a single point in Figure 3, where the x-axis is the mean
normalized wear-out (MNEW) and the y-axis indicates the
required number of replica sets, computed by Equation (8).
The MNEW values for the generated task sets range between
approximately 0.5 and 0.8, and the MNEW appears to be
linearly related to the required number of replicas. However,
deviations from this linear relationship occur due to two
factors: 1) the length of the hyper-period, and 2) rounding
to the nearest whole number of replicas.

Next, we provide intuition for the potential benefits of the
proposed wear-leveling scheme by comparing it to a baseline
approach in which no active wear-leveling is applied, and
only a replica strategy is used. In this baseline, the maximum
WCWO for each task invocation is considered as an upper

4



0.5 0.6 0.7 0.8

1,500

2,000

2,500

Mean Normalized Wear-Out (MNEW)

R
eq

ui
re

d
R

ep
lic

as
(r

)

Fig. 3. Required Replicas for Sampled Tasksets
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bound. To illustrate the difference between the proposed
scheme and the baseline, we present the relation between the
MNEW and the maximum NEW of each task as a histogram
across the generated task sets in Figure 4. The results show
that the MNEW can be up to ≈ 50% lower than the maximum
NEW in the generated task sets, highlighting the potential ben-
efit of the wear-leveling scheme. Additionally, we simulate the
invocation of tasks under the proposed wear-leveling scheme
throughout the system’s lifetime and record the memory aging
for each memory segment. Due to computational limitations,
we simulate a system lifetime of ≈ 1.4 · 108 ticks, instead
of the full 10-year lifetime. This simulation requires the use
of two replica sets for the generated task set. In Figure 5,
we plot the maximum memory age at each tick (blue line)
alongside the memory’s endurance limit (red line) on the y-
axis, with the system ticks on the x-axis. The results indicate
that the maximum memory age does not exceed the memory’s
lifetime limit in the example, demonstrating the effectiveness
of the proposed wear-leveling approach.

VII. CONCLUSION

In this paper, we address the overlooked issue of NVM
wear-leveling in critical, timing-constrained systems by
proposing a wear-leveling scheme that guarantees the lifetime
feasibility of a real-time system for a given targeted system
lifetime. To achieve this, we extend the classical real-time task
model to include worst-case wear-out and base our analysis on
this extension. By considering the targeted system lifetime,
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Fig. 5. Memory Wear-Out Simulation

we ensure lifetime feasibility through the introduction of
a predictable number of memory replicas. Additionally, we
conducted a practical evaluation to estimate the overhead
of migration operations, which are factored into the task’s
WCET. Finally, we performed a simulation study to determine
the required number of memory replicas, demonstrating the
effectiveness of the proposed scheme.
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