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Abstract—In many use cases the execution time of tasks is
unknown and can be chosen by the designer to increase or
decrease the application features depending on the availability of
processing capacity. If the application has real-time constraints,
such as deadlines, then the necessary and sufficient schedulability
test must allow the execution times to be left unspecified. By doing
so, the designer can then perform optimization of the execution
times by picking the schedulable values that minimize any given
cost.

In this paper, we review existing results on the formulation
of both the Fixed Priority and Earliest Deadline First exact
schedulability constraints. The reviewed formulations are ex-
pressed by a combination of linear constraints, which enables
then optimization routines.

I. INTRODUCTION

The necessity to trade the accuracy of applications with the
available processing capacity is common in many application
domains. Some notable examples are the MPEG decoding
which may be made at different degrees of detail, or the
solution of optimization problems which may be solved with
different proximity to the optimal solution. Notably, the work-
load of inference in neural network also belongs to this class
as one may choose the desired accuracy of the answer given
by a model.

If the application has real-time constrains, then schedulabil-
ity must be taken into account. Schedulability tests, however,
may not lend themselves to this type of problem as they
normally need to know the execution times and they provide a
“yes/no” answer to the schedulability questions, which is unfit
for optimization. Instead, schedulability conditions which are
formulated as combination of algebraic constraints between
the parameters are better suited to contexts in which some of
the parameters are unknown and are free to choose by the
designer.

In this paper, we review some existing results on this form
of constraints when the execution times are the free variables.
We address both Fixed Priority (FP) and Earliest Deadline
First (EDF) schedulability conditions and we present some
open problems in this context.

II. SYSTEM MODEL

We consider a set T = {τ1, . . . , τn} of n periodic tasks.
Each task τi is characterized by

• a worst-case execution time Ci (which may be called
execution time for simplicity),

• a period Ti, and
• a relative deadline Di not greater than Ti (constrained

deadline model).

All task parameters are assumed real-valued.
In the single processor context, which is addressed in this

paper, this same model also captures tasks with sporadic
releases. In such a case, Ti denotes the minimum interarrival
time between two consecutive jobs.

Each task releases an infinite sequence of jobs. Jobs are
indexed in N by the order of release. We assume 0 ∈ N. The
release time of the j-th job of τi is denoted by ri,j and releases
of consecutive jobs are constrained by

∀j ∈ N, ri,j+1 ≥ ri,j + Ti. (1)

Each job must also complete not later that its absolute deadline
di,j , which is set by

di,j = ri,j +Di. (2)

Finally, we use Ui =
Ci

Ti
to denote τi’s utilization as indeed,

it is the fraction of CPU time utilized by τi.
For a more compact notation, we may be using
• C = [C1, . . . , Cn] to denote the vector of all execution

times, and
• U = [U1, . . . , Un] to denote the vector of utilizations.
We address single processor preemptive scheduling. This

means that the scheduler may decide to preempt a running
job to schedule another higher priority job. The interrupted
job will then be continued later.

This paper considers only Fixed Priority (FP) and Earliest
Deadline First (EDF) schedulers, in Sections III and IV,
respectively. As proved by Liu and Layland [1], single pro-
cessor preemptive FP and EDF have the following worst-case
scenario for the job releases

∀j ∈ N, ri,j = j Ti, (3)

which corresponds to all tasks starting to release jobs si-
multaneously and at the fastest rate. This means that if the
jobs generated by the tasks are schedulable when released
according to (3), then they are always schedulable for any
releases fulfilling (1). From now on, we are then assuming
the worst-case scenario of (3).

III. FIXED PRIORITY

When tasks are scheduled by Fixed Priority (FP), we assume
they are indexed by decreasing priority, that is τℓ has priority
higher than τi if and only if ℓ < i.

For the purpose of optimizing over task execution time, it
is convenient to borrow the exact schedulability condition, as
formulated by Lehoczky et al. [2].



Theorem 1 (from [2]): A periodic task set T is schedulable
under Fixed Priority if and only if

∀i = 1, . . . , n ∃t ∈ [0, Di] Ci +

i−1∑
ℓ=1

⌈
t

Tℓ

⌉
Cℓ ≤ t. (4)

By using the more compact vector notation, the Eq. (4) can
be rewritten as

∀i = 1, . . . , n ∃t ∈ [0, Di] ki(t) ·C ≤ t (5)

where

ki(t) =

( from 0 to i − 1︷ ︸︸ ︷⌈
t

T1

⌉
,

⌈
t

T2

⌉
, . . . ,

⌈
t

Ti−1

⌉
, 1,

from i + 1 to n︷ ︸︸ ︷
0, . . . , 0

)
.

Testing if Eq. (5) is true for any t in the dense interval
[0, Di] is not practically feasible. In fact with elementary
considerations Lehoczky suggested the equivalent

n∧
i=1

∨
t∈Si

ki(t) ·C ≤ t (6)

with Si being the discrete and finite set defined by

Si = {j Tℓ : 1 ≤ ℓ < i, j Tℓ ≤ Di} ∪ {Di}. (7)

The set Si contains all the release instants rj,ℓ of any task τℓ
with priority higher than τi, with rj,ℓ ≤ Di, plus the deadline
Di of the task τi itself.

In Equation (6) we expressed the same condition of (5)
through the logical AND/OR operator instead of the proposi-
tional operators ∀/∃. This makes more clear that the space of
FP-schedulable execution times is the intersection of unions
of the half-spaces {ki(t) ·C ≤ t} in space of execution times
C ∈ Rn.

The challenge in a direct exploitation of (6) for the opti-
mization over the execution times is that the cardinality of the
set Si of (7) may grow significantly as the periods of high
priority tasks gets smaller and smaller w.r.t. the deadline Di.
This issue was then addressed [3], [4]. It was demonstrated
that if the priorities are Rate Monotonic, then a task set is
schedulable by RM, if and only if

n∧
i=1

∨
t∈Pi−1(Di)

ki(t) ·C ≤ t (8)

with Pi(t) generically defined by{
P0(t) = {t}
Pi(t) = Pi−1

(⌊
t
Ti

⌋
Ti

)
∪ Pi−1(t).

(9)

Figure 1 shows an example of computation of the two sets.
In the example with i = 3, it can be observed that the
points in P2(D3) are 4. Instead, the number of points in
Lehoczky’s S3 are 10. In general, the number of necessary
and sufficient points that need to be tested through (9) is
constant with a given number of tasks, whereas the number
of points from (7) may grow arbitrarily large with the task set
parameters. Figure 2 illustrates the space of RM schedulable
execution times for an example with 2 tasks.
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P2(D3)
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τ1 : T1 = 3

τ2 : T2 = 8

τ3 : D3 = 19

Fig. 1. An example of the schedulability points S3 and P2(D3) for a set of
3 tasks with T1 = 3, T2 = 8, and D3 = 19. Notice that the set of points
does not depend on the execution times.

C2

C1

i = 1, t = D1 : C1 ≤ D1

i = 2, t = 4 : C1 + C2 ≤ 4

i = 2, t = 5 :
2C1 + C2 ≤ 5

Fig. 2. Region of RM schedulable execution times. We draw C2 along the
horizontal axis and C1 along the vertical axis. In this example, we assume
n = 2 tasks and parameters: T1 = 4, D1 = 3, and D2 = 5 and any
T2 ≥ D2. From (8), when i = 1 we have P0(D1) = {D1} = {3} which
gives C1 ≤ 3 as the only (and trivial) necessary and sufficient constraint
to guarantee the schedulability of τ1, the highest priority task. When i = 2
the schedulability points are P2(D2) = {5, 4}, which yield the constraints
2C1+C2 ≤ 5 and C1+C2 ≤ 4, respectively, both represented by thin lines.
We need to make union among these constraints, as required by the logical
OR of (8), thus getting the two oblique thick segments. Since the overall
schedulability region is given by the intersection of the single-task regions,
we find that the RM-schedulable execution times are the ones represented in
the cyan area.

A. Open problems

In this section we sketch some problems which, to best of
our knowledge, are open.

Non-DM priorities: The reduction of schedulability
points of Eq. (9) can be made only when priorities are
DM/RM [3], [4]. The proof does exploit the fact that higher
priority tasks have a smaller period than the one under
analysis. Is a construction similar to the one of (9) applicable
to generic non-DM/RM priorities? In some preliminary ex-
periments [5], it was shown a counter-example of a non-DM
tasks’ set with a schedulability point not in the set of (9).
However, this investigation was not continued any further and
the counter-example is lost.

Tightness of the points: The set of points determined by
(9) is certainly smaller than the original Lehoczky’s set of (7).
It remains an open question if the reduced set of points can
be further reduced:

• without exploiting information on the execution times,
and

• keeping the set as necessary and sufficient condition.



Arbitrary deadlines: The direct extension of (8) to the
arbitrary deadline case would be

n∧
i=1

lastbusy(i)∧
j=0

∨
t∈Pi−1(j Ti+Di)

ki(t, j) ·C ≤ t (10)

with ki(t, j) defined by

ki(t, j) =

( from 0 to i − 1︷ ︸︸ ︷⌈
t

T1

⌉
,

⌈
t

T2

⌉
, . . . ,

⌈
t

Ti−1

⌉
, j+1,

from i + 1 to n︷ ︸︸ ︷
0, . . . , 0

)
.

properly extended to account the job j of τi. Also, in Eq. (10),
lastbusy(i) denotes the index of the last τi job in the level-i
busy interval [6]. The formulation of (10), however, poses a
few challenges with no answer:

• is there any redundancy among the many schedulabil-
ity points in Pi−1(j Ti + Di) as j spans from 0 to
lastbusy(i)?

• since the execution times C are unknown, how long is the
level-i busy interval? In the special case with

∑
i Ui = 1

and no hyperperiod H (irrational periods), which implies
that every instant is level-n busy and then lastbusy(n) →
∞, how can we test the schedulability of τn?

IV. EARLIEST DEADLINE FIRST

In this section, we illustrate some results following a similar
investigation for the EDF scheduling policy. Also, we remark
that in this section, we relax the constrained deadline case and
allow deadlines to be arbitrary (possibly larger than the period
of the corresponding task). Also we denote by H the hyper-
period, which is the least common multiple among all task
periods {T1, . . . , Tn}. Observe that in our initial hypothesis
we assumed all parameters to be real-valued. Hence, we
assume that the hyperperiod H exists (as it normally happens
in reality) and postpone the curious case of a non-existent
hyperperiod H to Section IV-A for a related open problem.

If the n tasks in T are scheduled by preemptive EDF, the
following condition is necessary and sufficient to ensure that
no job deadline is missed.

Theorem 2 (Corollary 1 in [7]): The task set T is scheduled
by preemptive EDF if and only if

n∑
i=1

Ui ≤ 1, (11)

and

∀t ∈ N, 0 ≤ t ≤ H +max
i

{Di},
n∑

i=1

max

{
0,

⌊
t−Di

Ti

⌋
+ 1

}
Ci︸ ︷︷ ︸

dbf(t)

≤ t (12)

The LHS of Eq. (12) is a very frequently used function in
real-time EDF scheduling, and it is called demand bound func-
tion dbf(t). Since dbf(t) is piecewise constant, the inequality
of Eq. (12) needs to be checked only at the instants t when

the dbf(t) changes value, which are all the absolute deadlines
of any job. Hence, the exact condition of Theorem 2 can be
simplified as stated in next corollary.

Corollary 1: The task set T is scheduled by preemptive
EDF if and only if

∀t ∈ D, h(t) ·C ≤ 1 (13)

with

D =
{
di,j = j Ti +Di : di,j ≤ H +max

i
{Di}

}
∪ {0} (14)

and h(t) = [h1(t), . . . , hn(t)],

hi(t) =

{
1
Ti

if t = 0
1
t max

{
0,
⌊
t−Di

Ti

⌋
+ 1
}

otherwise
(15)

In the definition of D of Eq. (14), we use the fictitious
“deadline at 0” to encode the utilization constraint of (11)
through the special definition of hi(0) =

1
Ti

.
The necessary and sufficient schedulability condition of (13)

already gives some information on the geometry of the EDF-
schedulable computation times. In fact, the space of EDF-
schedulable execution times is convex as it is the intersection
between linear halfspaces yielded by (13). Figure 4 illustrates
the EDF-schedulable execution times of the same simple
example of Figure 2.

As Figure 4 seems to suggest, there may be some deadlines
in D which are not necessary to be checked, as implied by
other constraints. Most of the methods to reduce the number of
deadlines to be checked [7], [8], [9], and then the complexity
of the test exploit the values of the execution times with
the general trend that “the smaller the utilization

∑
i Ui of

the whole set of tasks, the fewer deadlines are necessary”.
However, the question of whether some deadlines can be
eliminated from D without compromising the schedulability
and without exploiting the execution times received little
attention.

In a recent work [10], it was proposed a method that exploits
the convex hull of vectors to determine the smallest subset of
deadlines Dmin ⊆ D such that

∀t ∈ Dmin, h(t) ·C ≤ 1. (16)

On the one hand this method shows that the number of neces-
sary and sufficient linear constraints for EDF schedulability is
orders of magnitude less than the full set of (13). See Figure 3
for an example. On the other hand it works as a “black box”
algorithm producing the minimal set of constraint, providing
no insight on why these few deadlines only matters. Also, the
complexity of computing the convex hull of a large set of
vectors is very high.

In Figures 5, 6 and 7 we experimentally investigate the de-
pendency of the number of necessary and sufficient constraints
on the hyperperiod H . In red, we draw the upper envelope,
which then represents the hardest cases to be analyzed. Despite
the linear growth of |D| with H as implied by (14), the number
of necessary and sufficient constraints of the hardest cases
grows with logH . If this experimental evidence becomes a
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Fig. 3. The tight set of necessary and sufficient constraints for EDF. In this example, the parameters are T1 = 2, D2 = 3, T2 = 5, D2 = 5, and
T3 = 7, D3 = 6. Job releases are represented by upward black arrows. Job deadlines are represented by downward red arrows. We represent the deadlines
until H + max{Di} = 70 + 6 = 76, as required by (14). The number of total constraints to be checked is 49 corresponding to 48 deadlines plus the
utilization constraint of (11). The reduced number of constraints, however, is only 5: 4 deadlines (circled in green) plus the utilization constraint.

C2

C1

t = 3 : C1 ≤ 3

t = 15 : 4C1 + 3C2 ≤ 15

Fig. 4. Region of EDF schedulable execution times. As in Figure 2, we
draw C2 along the x axis and C1 along the y axis. Using the same example
of Figure 2, we assume 2 tasks with parameters: T1 = 4, D1 = 3, and
T2 = D2 = 5. In this case, the set D from (14) of all deadlines to be
considered is D = {3, 5, 7, 10, 11, 15, 19, 0}. We remind that the “deadline
0” represents the utilization constraint of (11). All constraints are represented
by a thin line, whereas the boundary of their intersection is represented by a
thicker line. It can be observed that a large majority of the constraints does not
contribute to determine the boundary of EDF-schedulable execution times. In
this example, only the 2 deadlines at 3 and at 15 are needed to characterize
the exact region.

confirmed fact, it may allow the existence of an exact EDF
test which is polynomial in the task periods [11], deferring
then the harder complexity to the number n of tasks only.
This seems not to contradict any existing result.

A. Open problems

Non-existent hyperperiod H: If the task periods are real-
valued, indeed their least common multiple, the hyperperiod
H , may not exist. In this case, the number of deadlines to
be tested is infinite. Also, the experiments of Figures 5, 6,
and 7 indicates that as H grows, the number of necessary and
sufficient constraints grows (logarithmically) with H . Some
existing EDF sufficient tests [12], [13], [14] do not require the
existence of an hyperperiod. Perhaps, some of them become
exact as H tends to infinity? Anyhow, how to test EDF
schedulability with no hyperperiod H is unknown.

Other approaches to minimal set of constraints: The
employment of the convex hull to determine the tight set of
points [10] is indeed very complex. Is there any logic behind
the points selected by the convex hull? Why are deadlines at 6,

Hyperperiod H
C

ar
di

na
lit

y
of

D
m
in

Fig. 5. In this experiment, randomly generated integer task period and
deadlines for n = 2 tasks. For each experiment, we are plotting a dot at the
corresponding hyperperiod H along the horizontal axis in log scale, and the
number of necessary and sufficient constraints along the vertical axis. At the
right, also the density of the minimal number of constraints over the sample
space. We also plot the upper envelope of the points as such an envelope
represents the hardest instances to be tested.
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Fig. 6. Same experiment of Figure 5 with n = 3 tasks.

13, 20, and 55 in the example of Figure 3 so special? If such a
logic is found, then we could go straight to these constraints,
with no complex machinery as the convex hull. Also, it may
be possible that such an algorithm is polynomial in the periods
as it grows with log(H).
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Fig. 7. Same experiment of Figure 5 with n = 4 tasks.

V. RELATED WORKS

The research touched by this paper covers a very broad
spectrum. As such it is surely incomplete. Next we report our
best attempt to cover the related literature.

In Fixed Priority, the response time analysis (RTA) [15],
[16], [17] is indeed very widely used. Many works have
addressed the efficiency of the RTA by proposing a later
initial instant for the iterations. In same cases, such initial
instant depends on the execution times, hence it is unsuitable
for optimization [18], [19]. Other works have proposed an
initial start instant for RTA, which is independent of the tasks’
execution times [20], [21]. Either way, the iterative nature of
RTA makes it unfit for optimization unless costly binary search
is employed [22].

If the periods have some good harmonic properties [23],
it is possible to discard some of the points in (9) as shown
by Zeng and Di Natale [24]. However, in the general case
of periods not dividing each other, it is unknown if the same
simplification is possible.

In the context of optimization of task parameters, the task
model with imprecise computation [25], [26] was perhaps
among the first ones to allow tasks to have a variable exe-
cution time. Reward-based scheduling was also a very good
method to decide the duration of each individual job in EDF,
assuming that the longer a job executed the more “reward” is
accumulated [27].

Exploiting the set of reduced schedulability points [3], [4],
Bini et al. [28] proposed to perform the sensitivity analysis on
the task parameters, providing a closed-form expression for
the acceptable margins for the execution times.

The elastic task model [29], [13] was also introduced
as a way to adjust the parameters (the task periods) while
preserving schedulability.

The reduction of constraints for EDF schedulability was
also addressed by George and Hermant [30]. They proposed to
solve an instance of a LP problem for each absolute deadline.
As shown in their paper, however, their method is not capable
to automatically cut all unnecessary deadlines.

The investigation of the case of irrational periods received,
with no surprise, little attention from the research community.
To best of our knowledge, the only known partial result is the
computation of the task response time as supremum of the
response time among all jobs [31].

Finally, it is worth mentioning the work by Singh [32],
who proposed an interesting unification between FP and EDF
schedulability tests.
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