
ILP Representations of Multi-Phase
Limited-Preemption Tasks

Benjamin Standaert∗, Marion Sudvarg†, Fatima Raadia‡, Christopher Gill∗
∗Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis, Missouri, United States

†Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States
‡Department of Computer Science, Wayne State University, Detroit, Michigan, United States

b.g.standaert@wustl.edu, msudvarg@wustl.edu, fatima.fr@wayne.edu, cdgill@wustl.edu

Abstract—Prior work considers the multi-phase secure (MPS)
task model, in which tasks execute across multiple security
domains that have significant preemption costs. Balancing block-
ing times with preemption overhead to guarantee schedulability
requires finding an optimal placement of preemption points,
which prior work has addressed for earliest deadline first (EDF)
scheduling of MPS tasks. Here, we present fixed-priority (FP)
algorithms for this task model, and investigate whether both the
FP and EDF problems can be represented and solved as an
ILP. We determine that an ILP solution is feasible, but does
not improve performance for single-core problems. However, we
show that the ILP can be extended to partitioned scheduling on
identical multiprocessors, where performance is improved over
an iterative algorithm.

Index Terms—real-time systems, limited-preemption schedul-
ing, multi-phase secure tasks, mixed-integer linear programming

I. INTRODUCTION

In modern computing systems, tasks often execute in phases
across multiple computational domains. For example, security-
sensitive phases may require isolation in a trusted execution
environment (TEE); other phases might be offloaded to a GPU
or FPGA [1]. In these contexts, task preemption may introduce
significant overhead – for example, switching into a TEE
has been found to incur a penalty exceeding 100 µs [2]–[4].
Furthermore, the cost of preemption depends on the domain in
which the phase executes – for example, if a task is preempted
while executing inside a TEE, the preemption cost may include
encrypting and copying the data out of the enclave.

If a fully-preemptive scheduler is used, the preemption cost
may inflate execution times dramatically, causing the task
system to become unschedulable. As such, for domain with
high preemption costs (such as TEE execution), many systems
schedule phases non-preemptively. However, this may lead to
priority inversion, with high-priority tasks blocking on long-
executing phases of lower priority tasks and missing deadlines.

In the limited-preemption task model [5] that was intro-
duced to deal with such problems, tasks are allowed to run
non-preemptively only part of the time, which reduces the
preemption overhead while bounding blocking times. The
multi-phase secure (MPS) task model extends limited pre-
emption to multi-phase tasks with domain-specific preemption
overheads [1]. In the MPS model, the startup and teardown
overheads of an execution domain are unavoidable during
phase transitions, so these serve as natural preemption points.

Additional preemption points can be inserted into the middle
of a phase as necessary. Under these assumptions, [1], [6]
present iterative algorithms to find (if it exists) the minimum
number of preemption points to insert into each task phase
such that there is an acceptable tradeoff between preemption
overhead and blocking time to guarantee EDF schedulability.

Our goal in this paper is to consider whether ILPs are
useful for expressing and solving the problem of finding
preemption points to guarantee schedulability in MPS task
systems. Indeed, in [7] – in which the traditional limited-
preemption model is extended to select from a fixed set of
potential preemption points with unique costs – the authors
note that while such problems may be solved using ILPs,
execution time may scale exponentially with the number
of preemption points, hypothesizing that they could rapidly
become infeasible. However, under the MPS model, only the
number of preemption points must be found, suggesting that it
may be possible to solve the problem using an ILP with many
fewer constraints and consequently better scaling behavior.

Moreover, in the iterative algorithm for EDF scheduling
of MPS tasks, the problem of computing the number of
preemption points might require evaluation of every time point
in an exponentially-sized testing set [1], [6], which could
result in poor performance on large task systems. While ILPs
in general also have exponential time complexity, off-the-
shelf solvers often achieve very good performance on many
problems. This paper therefore considers ILPs as an alternative
approach for both EDF and fixed-priority scheduling of MPS
task sets, implementing them using SCIP [8], an open-source
ILP solver, to evaluate their execution time feasibility.

To provide a basis of comparison for the ILPs, we use the al-
gorithm of [6] for limited-preemption EDF scheduling of MPS
tasks. For fixed-priority scheduling, we adapt the algorithm of
[9] to the MPS model, adjusting it to insert the minimum
feasible number of preemption points while accounting for
different preemption costs across phases. Though we find
for these algorithms that ILPs might not improve execution
times, they are still efficiently solvable, making them feasible
to use during offline scheduling decisions. Furthermore, the
added expressiveness of formulating the problem in this way
gives rise to extensions of the model, e.g., to partitioned
fixed-priority scheduling on a multiprocessor. We show that
solving such an ILP with SCIP gives better execution time
performance than an iterative partitioning algorithm.

1



II. BACKGROUND AND RELATED WORK

Limited-preemption scheduling balances the increased
blocking times of non-preemptive execution with the increased
overheads caused by context switching. The original model
minimizes context switching by finding the longest time each
task may execute non-preemptively without compromising
schedulability [5], [10], but does not account for the worst-case
overhead due to the resulting preemptions. Later approaches
account for both blocking time and preemption overheads by
defining instants that preemption can occur during task exe-
cution (called preemption points) to guarantee schedulability.
In [11], an algorithm is developed to find preemption points
for tasks scheduled with EDF under the assumption that the
preemption overhead for each task is constant. A similar model
for fixed-priority (FP) scheduling was developed in [9]. In [7],
tasks are modeled as sequences of “basic blocks,” and algo-
rithms are presented for selecting preemption points between
those blocks for both EDF and FP scheduling. Although less
flexible than the earlier “floating” preemption point models
where a preemption point can be placed anywhere, that model
allows different preemption costs between blocks.

The multi-phase secure (MPS) task model was introduced
in [1]. Motivated by tasks that execute in phases sequentially
across different security domains (e.g., TEEs) with unique
preemption costs, the model considers a set of constrained-
deadline, sporadic tasks {τi : τi ∈ Γ} characterized by a
period (minimum inter-arrival time) Ti and relative deadline
Di ≤ Ti, both of which are assumed to be integers ≥ 1, and
a sequence {τi,j} of phases. Each phase represents a block of
work that occurs in some domain – e.g., an initial phase that
runs in non-secure mode on a CPU, followed by a phase that
must run in a TEE or co-processor. Each phase τi,j has an
associated execution time ci,j and a setup/teardown cost qi,j
that must be paid at least once when switching into and out
of the phase, and again whenever it is preempted.

From the analysis in [1], preemption points spaced evenly
within a phase minimize blocking time in systems with
sporadic or asynchronous job releases. An integer xi,j ≥ 1
denotes the number of equally-sized non-preemptive segments
in which phase τi,j may execute, allowing no more than
xi,j−1 preemptions. Consequently,

βi,j =
ci,j
xi,j

+ qi,j (1)

represents the maximum time that phase τi,j may block execu-
tion of higher-priority tasks. Consequently, βi = maxj{βi,j}
is the maximum blocking time imposed by task τi. The total
execution time, with overheads, of task τi is

Ci =
∑
j

ci,j + xi,jqi,j . (2)

The problem is to assign values (if they exist) to each
term xi,j to guarantee schedulability. An algorithm to find
minimum values for each xi,j , thereby minimizing Ci, for
EDF scheduling of MPS task systems is presented in [1]
and improved in [6] with pseudo-polynomial running time

for bounded-utilization task sets. The latter is similar to the
algorithm in [11], but supports domain-specific preemption
costs rather than a constant overhead per task. In this paper,
we similarly extend the algorithm in [9] to FP scheduling of
MPS tasks, then construct ILPs to solve both problems.

Limited-preemption also has been extended to partitioned
scheduling in multi-core systems. By transformation from bin
packing, partitioned scheduling is by itself NP-complete in
the strong sense [12]. However, heuristics exist that often can
find feasible partitions if they exist [13]. These heuristics are
extended to limited-preemption tasks in [14]; however, they
do not provide an exact solution, and have not been fully
integrated with the MPS task model. In this paper, we construct
an ILP for exact schedulability analysis of partitioned FP
scheduling of MPS tasks.

Other work on limited-preemption scheduling [15], includ-
ing cache-aware analysis [16], probabilistic [17] or “typical”
execution models [18], and conditional control flows [19], [20]
are outside the scope of this paper.

III. EDF SCHEDULING OF MPS TASKS

In this paper, we propose an ILP as an alternative to the
iterative algorithms in [1], [6] for EDF schedulability analysis
of MPS tasks. EDF schedulability analysis for constrained-
deadline tasks is coNP-complete in general [21], [22], and
requires checking processor demand at a number of time points
that may grow exponentially with the number of tasks. An ILP
therefore may be an attractive alternative where the testing set
(the set of time points to check) is very large.

A. Background

The algorithm in [1] is a two-step approach to solving
the limited-preemption EDF problem. First, it iterates over
every time point in the testing set T = {td ≡ k · Ti +Di}
for k ∈ N, stopping at Dmax = maxτi{Di}. At each point,
it checks the available “slack”:

S(td) = td −
∑
τi

DBF(τi, td) (3)

where the demand-bound function DBF represents the maxi-
mum possible execution time required by instances of the task
that have deadlines before td:

DBF(τi, t) = max

(⌊
t−Di

Ti

⌋
+ 1, 0

)
· Ci (4)

The algorithm then checks if any lower-priority task can
block for longer than the available slack; if so, it inserts
additional preemption points until the blocking time of each
lower-priority task is less than or equal to the available slack.

Second, once preemption points are fixed, the algorithm
tests the remaining time points in T , ensuring that slack
remains ≥ 0. As shown in [23], when total utilization U < 1,
only points in T not exceeding the following upper bound
must be checked:

min

(
lcm(T1...Tn),max

(
Dmax,

∑n
i=1 Ui · (Ti −Di)

1− U

))
.

2



The approach is further refined in [6] by identifying that
for systems of implicit-deadline tasks (Di = Ti), the second
step can be replaced by a fast utilization check. Otherwise,
however, the entire testing set must be checked up to the above
bound. This set can become very large for systems with many
tasks, particularly as the utilization approaches 1.

B. ILP Representation

The longer second stage of the described algorithm can
be replaced with an ILP, where the objective is to find the
minimum slack at any time point td, and check whether the
result is ≥ 0. After running the first stage, we first check the
total utilization. If U > 1, we return unschedulable. Otherwise,
we construct and solve the following ILP:

1) Define a variable T ≥ Dmax, representing the td with the
minimum slack. To avoid issues with numerical instability
in SCIP, we constrain T ≤ H , where H is the hyperperiod.

2) Next, construct a representation of Equation 4. For each task
τi, define an integer variable Zi that represents the number
of job releases in the time up to td; in other words,

Zi = max

(⌊
T −Di

Ti

⌋
+ 1, 0

)
.

Since T ≥ Dmax, the first term of the max function is non-
negative and thus Zi =

⌊
T−Di

Ti

⌋
+1. Since Zi is an integer,

this is enforced by the following constraint:

T −Di

Ti
< Zi ≤

T −Di

Ti
+ 1

SCIP does not support strict inequalities, so the < on the
LHS is replaced with ≤. However, this does not change
the solution produced: if the solver finds a solution where
T−Di

Ti
is a valid integer solution to Zi, then T−Di

Ti
+ 1

is also a valid integer solution. We have structured our
ILP to minimize slack, and increasing Zi (i.e. increasing
the number of times a task runs up to some time point)
will always increase the DBF, and therefore reduce slack.
Therefore, the ILP solver will always choose T−Di

Ti
+ 1 as

the solution to Zi given either form of the constraint.
3) From Equation 3, the slack at any time point T then be-

comes S = T −
∑

τi
ZiCi. As we are seeking to minimize

the slack across all T , we can turn this into a constraint:

S ≥ T −
∑
τi

ZiCi

Finally, to determine schedulability, we execute the solver
to minimize S and check that S ≥ 0.

IV. FP SCHEDULING OF MPS TASKS

From [24], a fixed-priority, constrained-deadline task system
(indexed in decreasing priority order) that experiences block-
ing (as in the MPS model) is schedulable if and only if:

∀τi, ∃t ≤ Di : t ≥ Ci+

(
i−1∑
k=1

⌈
t

Tk

⌉
× Ck

)
+max

∀k>i
{βk} (5)

Algorithm 1 Fixed-Priority MPS Task Scheduling

1: Input: Set Γ of n constrained-deadline MPS tasks
2: Output: Values xi,j indicating the number of equal-sized

non-preemptive regions in each phase τi,j
3:
4: β1 = ∞ ▷ Max blocking time by τ1
5: C1 = 0 ▷ Execution time of τ1
6: for all τ1,j ∈ τ1 do
7: x1,j = 1
8: C1 = C1 + c1,j + q1,j
9: end for

10: B̂1 = D1 − C1 ▷ Blocking tolerance of τ1
11:
12: if B̂1 < 0 then return Not Schedulable
13:
14: for i = 2, . . . , n do ▷ Remaining tasks
15: βi = min(βi−1, B̂i−1) ▷ Max blocking time by τi
16: Ci = 0 ▷ Execution time of τi
17: for all τi,j ∈ τi do ▷ Assign xi,j for each phase
18: if qi,j ≥ βi then return Not Schedulable
19: xi,j =

⌈
ci,j

βi−qi,j

⌉
20: Ci = Ci + ci,j + xi,j · qi,j
21: end for
22: B̂i = maxt∈Ti

(
t− Ci −

∑i−1
k=1

⌈
t
Tk

⌉
× Ck

)
23: if B̂i < 0 then return Not Schedulable
24: end for
25: return {xi,j}

where βj represents the maximum amount of time that τj can
block other tasks, e.g., by running non-preemptively.

In this section, we present two algorithms to assign values
xi,j (the number of non-preemptive chunks in each phase) to
guarantee FP schedulability of MPS tasks.

A. Iterative Solution

[9, Algorithm 2] is an iterative procedure for finding the
maximum length of time βi that each task τi may run without
preemption while allowing the system to remain schedulable.
Here, we adapt that algorithm to MPS task systems, making
a few key changes. Our procedure is outlined in Algorithm 1,
using the notation introduced earlier in this paper, which
follows the more recent notation in [1].

The algorithm iterates over tasks in descending priority
order, computing for each task τi the maximum time βi

that it can block higher-priority tasks without compromising
schedulability. It also computes the blocking tolerance B̂i for
each task τi. This is defined in [9] as the maximum time τi
can be blocked by lower priority tasks while still meeting its
deadline, i.e., the maximum value that maxj>1{βj} can take
such that the recurrence in Equation 5 is satisfied.

For τ1, the blocking tolerance is just its slack D1 − C1, and
β1 = ∞ since there are no higher-priority tasks for it to block.
For subsequent tasks, the maximum allowed blocking time βi

is just the minimum blocking tolerance of all higher-priority
tasks; the iteration order guarantees these values have already

3



been computed. Unlike [9, Algorithm 2], lines 17–20 of our
algorithm compute the resulting number of non-preemptive
regions for each task phase, as well as the resulting task
execution times. The blocking tolerance B̂i is then computed
on line 22 by testing times td ≤ Di in the testing set Ti,
i.e., those times where the RHS of Equation 5 can change:
Ti = {td ≡ m · Tk +Dk} for m ∈ N and k < i.

We note that [9, Algorithm 2] computes the maximum
length of non-preemptible regions of each task under the
assumption that task execution times remain unchanged, i.e.,
the addition of preemption points does not affect a task’s
blocking tolerance. This means that the given task set has
to be checked a priori for feasibility when scheduled fully
preemptively without overheads, but schedulability does not
have to be reconfirmed while the procedure executes. In
contrast, our algorithm has to compute B̂i for each task
after preemption points are assigned to each phase, since
the resulting overhead impacts the task’s execution time. In
line 23, if the blocking tolerance is negative, the task set
is deemed unschedulable – this check removes the need for
a prior feasibility test while also ensuring that the task set
remains schedulable as preemption points are inserted.

B. ILP Solution

Starting with the problem definition above, we build on
the ILP representation of FP response-time analysis in [25]
and the representation of the FP constrained-deadline elastic
scheduling problem in [26]. An integer variable xi,j ≥ 1, as
defined in Section II, indicates how many times phase τi,j of
task τi may run non-preemptively. The worst-case execution
time of τi is given by Equation 2, and the blocking time βi of
the task is thus the maximum blocking time among its phases,
βi = maxj{βi,j}, with βi,j given by Equation 1.

The following steps construct an ILP for Equation 5:

1) For each task τi, define a real-valued variable 0 < ti ≤ Di

representing a value of t for which Equation 5 holds.
2) For each pair of tasks τi, τk with k < i, define an integer

variable Zi,k ≥ ti
Tk

. Because Zi,k is an integer, it will re-
spect the ceiling operator (⌈ ⌉) in Equation 5. This represents
the number of jobs of the higher-priority task τk that can
interfere with a job of τi. Note that we do not provide any
upper bound on Zi,k; however, for some t, decreasing Zi,k

can only reduce the right-hand side of Equation 5. As the
ILP solver must make the right-hand side of Equation 5
small enough for some t in order to form a valid solution,
it will naturally minimize this variable if needed.

3) For every task τi, define a real variable βi that represents the
time τi can block higher-priority tasks. This is the maximum
blocking time among its phases, so for each phase, add a
constraint βi ≥ ci,j

xi,j
+ qi,j .

4) For every task τi, define a variable Bi representing the
maximum time it can be blocked by lower-priority tasks.
Then for every pair of tasks τi, τj with j > i, we add the
constraint Bi ≥ βj .

5) For every task τi, add a final constraint for Equation 5,
where ni represents the number of phases in τi:

ni∑
j=1

ci,j +

ni∑
j=1

qi,jxi,j +

i−1∑
k=1

Zi,kCk

+

i−1∑
k=1

nk∑
j=1

qk,jZi,kxk,j +Bi ≤ ti

(6)

If the task system is schedulable when introducing preemp-
tion points, then the ILP solver will be find a set of values
xi,j that satisfy all constraints at some ti for each task.

Our ILP can be configured either to find a feasible solution –
some combination of xi,j that ensures the system is schedula-
ble – or an optimal solution, which additionally minimizes the
total preemption cost. To find an optimal solution, construct
the ILP to additionally minimize

∑
i,j xi,j

qi,j
Ti

since each
term is proportional to the amount by which increasing xi,j

increases utilization.

V. PARTITIONED FIXED-PRIORITY SCHEDULING

In this section, we illustrate one of the benefits of using an
ILP to express scheduling problems for MPS tasks – namely,
that the expressive power of ILPs allows straightforward
extensions with additional constraints, e.g., for alternative
scheduling models. Here, using an approach inspired by [27],
we extend our ILP from Section IV-B to partitioned FP
scheduling across m identical processors.

As in [27], for every pair of tasks τi, τk, we define a
zero-one variable si,k with the intended interpretation that it
takes the value 1 if the two tasks are scheduled on the same
processor, or 0 otherwise. The tasks are schedulable if and
only if there exists, for each task τi, a ti ≤ Di that satisfies

ti ≥ Ci +

(∑
k<i

⌈
ti
Tk

⌉
Ck · si,k

)
+max

∀k>i
{βk · si,k} (7)

In other words, for each task, only other tasks that run on
the same processor will contribute towards the execution time
and blocking time portions of the recurrence. Similarly to [27],
we first set up constraints to enforce our definition of si,k:

1) For each task τi and processor p, define a zero-one variable
zi,p, with the interpretation that it takes the value 1 if and
only if τi executes on processor p. To represent that each
task should be assigned to exactly one processor, we add a
constraint for each τi that

∑m
p=1 zi,p = 1.

2) For each pair of tasks τi, τk with i < k, and each proces-
sor p, define a zero-one variable yi,k,p with the intended
interpretation that it takes the value 1 if and only if τi
and τk both execute on processor p. We enforce this
using a SCIP AND constraint, yi,k,p = zi,p ∧ zk,p. For
solvers that do not support boolean expressions, this can
instead be enforced with linear constraints using established
linearization techniques [28].

3) Then, construct a constraint for si,k by summing over all
possible processor cores: si,k =

∑m
p=1 yi,k,p.

4



0.2 0.4 0.6 0.8 1.0
Utilization

0

2

4

6

M
ea

n 
Ti

m
e 

(m
s)

20 tasks
15 tasks
10 tasks
5 tasks

(a) EDF ILP solution

0.2 0.4 0.6 0.8 1.0
Utilization

0.02

0.04

0.06

0.08

0.10

M
ea

n 
Ti

m
e 

(m
s)

20 tasks
15 tasks
10 tasks
5 tasks

(b) EDF iterative solution

Fig. 1: Mean times to determine schedulability and find preemption points. Note the different y-axis scales. The vertical
ordering of the series matches the ordering of the legend.

4 6 8 10 12 14 16 18 20
Tasks per Taskset

0

20

40

60

80

100

M
ea

n 
Ti

m
e 

(m
s)

FP ILP (Optimal)
FP ILP (Feasible)
FP Iterative

4 6 8 10 12 14 16 18 20
Tasks per Taskset

0.025

0.050

0.075

0.100

0.125

0.150

M
ea

n 
Ti

m
e 

(m
s)

FP Iterative

Fig. 2: Mean times for FP scheduling. Note the different y-axis scales.

Then, we add the same constraints as our formulation in
section IV-B, while making the following changes:

1) We update our definition of Zi,k so that it represents the
term

⌈
ti
Tk

⌉
· sik with only linear constraints. As in [27], it

is constrained as Zi,k ≥ 0 and

Zi,k ≥ ti
Tk

−M1(1− si,k) (8)

where the constant M1 = Dmax + 1. If si,k = 0, in-
dicating that the tasks run on different cores, then
M1(1− si,k) = M1. Since Tk ≥ 1 and ti is constrained
as ti ≤ Dmax, this is sufficient to guarantee that the RHS
of (8) evaluates to a negative value, and so Zi,k takes the
value 0. Otherwise, if si,k = 1, then M1(1− si,k) = 0, and
since Zi,k is an integer it takes the value

⌈
ti
Tk

⌉
.

2) Similarly, we must update our definition of Bi so that
it represents the term maxk>i{βk · si,k} with only linear
constraints. Here, we let M2 = Dmax+1; this value will be
larger than the WCET of any task, and consequently, larger
than any task’s maximum possible blocking time. Then for
every pair of tasks τi, τk with k > i, we add constraints of
the form Bi ≥ 0 and

Bi ≥ βk −M2(1− si,k) (9)

By the same logic as before, Bi ≥ βk if and only if τi and
τk execute on the same core.

With these changes, we add a constraint of the form in
Equation 6. An MPS task set is partitioned-FP schedulable on
m identical cores if and only if a set of values xi,j describing

the preemption points for each task phase and zi,p describing
processor assignments are found to satisfy the constructed ILP.

VI. EVALUATION

We evaluate the performance of our algorithms using a C++
simulation on randomly-generated synthetic MPS task sets,
into which we link version 8 [29] of SCIP [8] to solve the
ILP. Following the methodology in [1], the number of phases
for each task is selected uniformly from 1–4, and task periods
are selected uniformly from the integers 10–30.

All tests were performed on a server with two Intel Xeon
Gold 6130 (Skylake) processors running at 2.1 GHz, and with
64GB of memory. Multiple task sets were evaluated in parallel;
each task set was given a single thread in which to run.

A. EDF ILP

To test the performance of our EDF ILP in Section III-B,
we generate task sets of size n from 3–20 with total uti-
lizations U = 0.1...0.9 in increments of 0.1. [6] hypothesized
that the iterative algorithm would run more slowly for task
sets with utilizations close to 1; therefore, we also test
U = {0.95, 0.98, 0.99, 0.999}. Total utilization is distributed
among tasks using the UUniFast algorithm [30], which follows
a uniform random distribution. As in [6], after periods are also
generated, UUniFast is invoked again for each task to dis-
tribute its resulting total execution time among the execution
times ci,j and setup/teardown costs qi,j for each of its phases.

As the ILP step is unnecessary for implicit-deadline tasks,
we randomly select a deadline uniformly from the integers
between the task’s execution time and period. For each com-
bination (n,U), we generate 1000 task sets. For each test, we

5



0.2 0.4 0.6 0.8 1.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

EDF - 3 tasks
FP - 3 tasks
EDF - 20 tasks
FP - 20 tasks

(a) Implicit deadlines

0.2 0.4 0.6 0.8 1.0
Utilization

0.0

0.2

0.4

0.6

0.8

1.0

Sc
he

du
la

bi
lit

y 
Ra

tio

EDF - 3 tasks
FP - 3 tasks
EDF - 20 tasks
FP - 20 tasks

(b) Constrained deadlines

Fig. 3: Comparison of EDF and FP schedulability.

2.0 4.0 6.0 8.0
Utilization

10 3

10 1

101

103

M
ea

n 
Ti

m
e 

(s
ec

)

14 tasks
13 tasks
12 tasks
11 tasks
10 tasks

(a) Feasible

2.0 4.0 6.0 8.0
Utilization

100

101

102

103

104

M
ea

n 
Ti

m
e 

(s
ec

)

14 tasks
13 tasks
12 tasks
11 tasks
10 tasks

(b) Optimal

Fig. 4: Mean times for partitioned FP iterative solution. Note the log scale of the y-axis. The vertical ordering of the series
matches the ordering of the legend.

2.0 4.0 6.0 8.0
Utilization

10 1

100

101

102

M
ea

n 
Ti

m
e 

(s
ec

)

20 tasks
18 tasks
16 tasks
14 tasks
12 tasks
10 tasks

(a) Feasible

2.0 4.0 6.0 8.0
Utilization

10 1

100

101

M
ea

n 
Ti

m
e 

(s
ec

)

20 tasks
18 tasks
16 tasks
14 tasks
12 tasks
10 tasks

(b) Optimal

Fig. 5: Mean times for partitioned FP ILP solution. Note the log scale of the y-axis. The vertical ordering of the series matches
the ordering of the legend.

run the EDF ILP from Section III-B and the iterative procedure
in [6, Algorithm 1] and record their execution times.

Results are shown in Figure 1. Although the execution time
of the iterative algorithm does increase when U is very close to
1, the increase is not as large as hypothesized. One contributing
factor to this is that in a constrained-deadline system, the
schedulability ratio of tasks where U is close to 1 is very low
– for example, with 20 tasks, less than 1% of the task systems
are schedulable when U ≥ 0.98. As the iterative algorithm
terminates once it deems a task set unschedulable, it rarely
evaluates the entire testing set. We further observe that the ILP
generally exhibits execution times that are orders of magnitude
higher than the iterative algorithm. Nonetheless, it completes
in under 8ms on average, remaining feasible as an approach
to schedulability analysis.

B. Fixed-Priority Uniprocessor ILP

To evaluate our FP uniprocessor implementations, we con-
sider sets of n tasks from 3–20 with total utilizations U from
0.1–1.0 in increments of 0.1. For each combination (n,U), we
generate 1000 task sets according to the above methodology.
Tasks are assigned rate-monotonic (RM) priorities.

Figure 2 compares the performance of the ILP and iterative
approaches. We observed no significant performance differ-
ences when evaluating tasks with implicit deadlines compared
to constrained deadlines generated as before. Figure 2 there-
fore displays just the results for implicit-deadline tasks with
U = 0.8 as a representative example. We observe that the
feasible (finding values xi,j to guarantee schedulability) and
optimal (finding schedulable values of xi,j that also minimize

6



utilization) versions of the ILP have almost equivalent average
execution time behavior. Furthermore, although both the ILP
and iterative approaches exhibit similar scaling behavior with
the number of tasks, the ILP solution is much slower in all
cases than the iterative solution.

For practitioners deciding between EDF and rate-monotonic
FP scheduling for systems of MPS tasks, we also compare the
schedulability of these approaches. Figure 3 shows the schedu-
lability ratios as total utilization U approaches 1 for both
constrained-deadline and implicit-deadline task sets, using the
same total utilizations tested in Section VI-A. With implicit
deadlines, schedulability ratios remains close to 1 for task sets
with U ≤ 0.7. For larger utilizations, EDF schedules more sets
of 20 tasks than 3, whereas FP schedules more sets of 3 tasks
than 20. This makes sense, since our method for generating
tasks typically assigns larger preemption costs to systems with
fewer tasks. Since the utilization bound of preemptive EDF is
unaffected by the number of tasks, it makes sense that lower
preemption costs yield better schedulability. Preemptive rate-
monotonic scheduling, however, has its schedulable utilization
decrease with larger task sets [31], an effect that we observe to
dominate the improvements of smaller preemption overheads.
For constrained deadlines, on the other hand, EDF schedula-
bility is lower for 20 than 3 tasks.

C. Fixed-Priority Partitioned Multicore ILP

To evaluate the performance benefits of our partitioned FP
multiprocessor solution, we compare it to a simple iterative
algorithm that generates every possible partition of a given set
of tasks onto a given number of cores, then uses Algorithm 1
to test the schedulability of each individual subset. When
configured to find a feasible solution, our algorithm begins
with more uniformly-distributed partitions, terminating once
it finds a partition for which all subsets are schedulable.
When configured to find an optimal solution, it iterates over
all partitions to find the solution with the lowest preemption
overhead. We note that there are many heuristics that may
find schedulable partitions more quickly [14]; however, these
approaches generally do not provide exact schedulablility
analysis, as does our ILP approach.

We generate task sets of size n from 10–20 with total
utilizations U from 1–8 in steps of 1. For each combination
(n,U), we generate 50 sets using the above methodology. This
time, however, we distribute utilizations uniformly using the
Dirichlet Rescale (DRS) algorithm [32], [33], which allows us
to limit each individual task’s utilization to 0.8, ensuring that
it can be partitioned successfully onto a CPU core.

As shown in Figure 4, iteratively testing all partitions
quickly becomes infeasible as the number of tasks is increased.
When finding a feasible solution, the solver can execute
quickly when utilization is low, as the first few tested partitions
are likely to be feasible. However, once utilization is increased,
finding a feasible solution can take over 1000 seconds. When
searching for an optimal solution, which requires testing all
partitions, the solver took over an hour to run on sets of 14

tasks. For sets of 15 tasks, the solver was not able to finish
running in a reasonable amount of time.

Figure 5 shows the ILP execution times, which are signifi-
cantly faster. For sets of 14 tasks, the ILP can find a solution
in just a few seconds. Even for sets of 20 tasks, the execution
time of the ILP is on the order of hundreds of seconds –
significantly faster than that of the iterative solution with just
14 tasks. Additionally, the gap in execution times between
the feasible- and optimal-solution configurations of the ILP is
much smaller; its execution times are reasonable for sets of
20 tasks even when configured to find an optimal solution.

VII. CONCLUSION

In this work, we evaluate the applicability of ILPs to the
multi-phase secure task model defined in [1]. We demon-
strate feasibility of an ILP representation for schedulability
analysis under this model. Although these suffer from higher
execution times than corresponding iterative algorithms for
uniprocessor scheduling problems, we demonstrate that ILPs
can be extended easily to account for additional scheduling
constraints. Moreover, for partitioned FP scheduling on an
identical multiprocessor, an ILP has significant performance
advantages over an exact iterative solution.

As future work, we plan to investigate whether the EDF
ILP can be further optimized by structuring it as a feasibility
problem (i.e., identifying a time point with negative slack)
rather than an optimization problem (finding the minimum
slack). We also intend to investigate whether the partition-
ing heuristics in [14] can be used to guide the ILP and/or
the iterative solution toward feasibility in less time while
still finding an exact solution. We also intend to investigate
whether, under this task model, analysis of upper bounds on
the number of times a task can actually be preempted can
benefit the model by reducing the accounted overhead, and
consequently improving schedulability. Finally, we intend to
investigate extensions to conditional execution models.

VIII. ACKNOWLEDGEMENTS

This work was supported by NSF grants CPS-2229290,
CNS-2141256, CPS-2038609 and CNS-2211641 and a seed
grant from Washington University in St. Louis. The authors
would like to thank Dr. Sanjoy Baruah, Dr. Thidapat Chantem,
and Dr. Nathan Fisher for their contributions towards develop-
ing the multi-phase secure model. The authors would also like
to thank Dr. Ning Zhang, Ao Li, Jinwen Wang, and Tanmaya
Mishra for their assistance in understanding the execution
model of TEEs. Finally, the authors would like to thank Dr.
Filip Marković for his assistance in providing information on
task partitioning heuristics.

REFERENCES

[1] S. Baruah, T. Chantem, N. Fisher, and F. Raadia, “A
Scheduling Model Inspired by Security Considerations,”
in 2023 IEEE 26th International Symposium on Real-
Time Distributed Computing (ISORC), 2023, pp. 32–41.
DOI: 10.1109/ISORC58943.2023.00016.

7

https://doi.org/10.1109/ISORC58943.2023.00016


[2] A. Mukherjee, T. Mishra, T. Chantem, N. Fisher, and
R. Gerdes, “Optimized trusted execution for hard real-
time applications on COTS processors,” in Proceedings
of the 27th International Conference on Real-Time
Networks and Systems, 2019, pp. 50–60.

[3] J. Wang, A. Li, H. Li, C. Lu, and N. Zhang, “RT-TEE:
Real-time System Availability for Cyber-physical Sys-
tems using ARM TrustZone,” in 2022 IEEE Symposium
on Security and Privacy (SP), IEEE, 2022, pp. 352–369.

[4] M. F. Babar and M. Hasan, “DeepTrustˆ RT: Con-
fidential Deep Neural Inference Meets Real-Time!”
In 36th Euromicro Conference on Real-Time Systems
(ECRTS 2024), Schloss Dagstuhl–Leibniz-Zentrum für
Informatik, 2024.

[5] S. Baruah, “The limited-preemption uniprocessor
scheduling of sporadic task systems,” in 17th Euromicro
Conference on Real-Time Systems (ECRTS’05), 2005,
pp. 137–144. DOI: 10.1109/ECRTS.2005.32.

[6] B. Standaert, F. Raadia, M. Sudvarg, et al., A
Limited-Preemption Scheduling Model Inspired by Se-
curity Considerations. [Online]. Available: https : / /
openscholarship.wustl.edu/cse facpubs/2/.

[7] M. Bertogna, O. Xhani, M. Marinoni, F. Esposito, and
G. Buttazzo, “Optimal selection of preemption points
to minimize preemption overhead,” in 2011 23rd Eu-
romicro Conference on Real-Time Systems, IEEE, 2011,
pp. 217–227.

[8] T. Achterberg, “SCIP: Solving constraint integer
programs,” Mathematical Programming Computation,
vol. 1, no. 1, pp. 1–41, Jul. 2009, ISSN: 1867-2957.
DOI: 10.1007/s12532-008-0001-1.

[9] G. Yao, G. Buttazzo, and M. Bertogna, “Feasibil-
ity analysis under fixed priority scheduling with lim-
ited preemptions,” Real-Time Systems, vol. 47, no. 3,
pp. 198–223, 2011, Publisher: Springer.

[10] M. Bertogna and S. Baruah, “Limited Preemption EDF
Scheduling of Sporadic Task Systems,” IEEE Transac-
tions on Industrial Informatics, vol. 6, no. 4, pp. 579–
591, Nov. 2010, ISSN: 1551-3203, 1941-0050. DOI: 10.
1109/TII.2010.2049654.

[11] M. Bertogna, G. Buttazzo, M. Marinoni, G. Yao, F.
Esposito, and M. Caccamo, “Preemption Points Place-
ment for Sporadic Task Sets,” in 2010 22nd Euromicro
Conference on Real-Time Systems, 2010, pp. 251–260.
DOI: 10.1109/ECRTS.2010.9.

[12] R. I. Davis, A. Burns, J. Marinho, V. Nelis, S. M. Pet-
ters, and M. Bertogna, “Global and Partitioned Multi-
processor Fixed Priority Scheduling with Deferred Pre-
emption,” ACM Trans. Embed. Comput. Syst., vol. 14,
no. 3, Apr. 2015, Place: New York, NY, USA Publisher:
Association for Computing Machinery, ISSN: 1539-
9087. DOI: 10.1145/2739954.

[13] J. M. López, J. L. Dı́az, and D. F. Garcı́a, “Utilization
Bounds for EDF Scheduling on Real-Time Multipro-
cessor Systems,” Real-Time Systems, vol. 28, no. 1,

pp. 39–68, Oct. 2004, ISSN: 1573-1383. DOI: 10.1023/
B:TIME.0000033378.56741.14.

[14] F. Marković, J. Carlson, and R. Dobrin, “A Compar-
ison of Partitioning Strategies for Fixed Points Based
Limited Preemptive Scheduling,” IEEE Transactions on
Industrial Informatics, vol. 15, no. 2, pp. 1070–1081,
2019. DOI: 10.1109/TII.2018.2848879.

[15] G. C. Buttazzo, M. Bertogna, and G. Yao, “Limited Pre-
emptive Scheduling for Real-Time Systems. A Survey,”
IEEE Transactions on Industrial Informatics, vol. 9,
no. 1, pp. 3–15, 2013. DOI: 10.1109/TII.2012.2188805.

[16] F. Marković, J. Carlson, and R. Dobrin, “Cache-aware
response time analysis for real-time tasks with fixed pre-
emption points,” in 2020 IEEE Real-Time and Embed-
ded Technology and Applications Symposium (RTAS),
2020, pp. 30–42. DOI: 10.1109/RTAS48715.2020.00-
19.

[17] F. Markovic, J. Carlson, R. Dobrin, B. Lisper, and
A. Thekkilakattil, “Probabilistic response time analysis
for fixed preemption point selection,” in 2018 IEEE
13th International Symposium on Industrial Embedded
Systems (SIES), 2018, pp. 1–10. DOI: 10.1109/SIES.
2018.8442099.

[18] S. Baruah and N. Fisher, “Choosing preemption points
to minimize typical running times,” in Proceedings of
the 27th International Conference on Real-Time Net-
works and Systems, ser. RTNS ’19, Toulouse, France:
Association for Computing Machinery, 2019, pp. 198–
208, ISBN: 9781450372237. DOI: 10 . 1145 / 3356401 .
3356407.

[19] B. Peng, N. Fisher, and M. Bertogna, “Explicit pre-
emption placement for real-time conditional code,” in
2014 26th Euromicro Conference on Real-Time Systems,
2014, pp. 177–188. DOI: 10.1109/ECRTS.2014.25.

[20] F. Raadia, N. Fisher, T. Chantem, and S. Baruah,
“An improved security-cognizant scheduling model,” in
2024 IEEE 27th International Symposium on Real-Time
Distributed Computing (ISORC), IEEE, 2024, pp. 1–8.

[21] P. Ekberg and W. Yi, “Uniprocessor feasibility of
sporadic tasks with constrained deadlines is strongly
coNP-complete,” in Proceedings of the 27th Euromicro
Conference on Real-Time Systems (ECRTS), Jul. 2015,
pp. 281–286. DOI: 10.1109/ECRTS.2015.32.

[22] P. Ekberg and W. Yi, “Uniprocessor feasibility of spo-
radic tasks remains coNP-complete under bounded uti-
lization,” in Proceedings of the 36th Real-Time Systems
Symposium (RTSS), 2015, pp. 87–95. DOI: 10 . 1109 /
RTSS.2015.16.

[23] S. K. Baruah, L. E. Rosier, and R. R. Howell, “Al-
gorithms and complexity concerning the preemptive
scheduling of periodic, real-time tasks on one proces-
sor,” Real-time systems, vol. 2, no. 4, pp. 301–324,
1990, Publisher: Springer.

[24] E. Bini and G. C. Buttazzo, “Schedulability analysis
of periodic fixed priority systems,” IEEE Transactions

8

https://doi.org/10.1109/ECRTS.2005.32
https://openscholarship.wustl.edu/cse_facpubs/2/
https://openscholarship.wustl.edu/cse_facpubs/2/
https://doi.org/10.1007/s12532-008-0001-1
https://doi.org/10.1109/TII.2010.2049654
https://doi.org/10.1109/TII.2010.2049654
https://doi.org/10.1109/ECRTS.2010.9
https://doi.org/10.1145/2739954
https://doi.org/10.1023/B:TIME.0000033378.56741.14
https://doi.org/10.1023/B:TIME.0000033378.56741.14
https://doi.org/10.1109/TII.2018.2848879
https://doi.org/10.1109/TII.2012.2188805
https://doi.org/10.1109/RTAS48715.2020.00-19
https://doi.org/10.1109/RTAS48715.2020.00-19
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1109/SIES.2018.8442099
https://doi.org/10.1145/3356401.3356407
https://doi.org/10.1145/3356401.3356407
https://doi.org/10.1109/ECRTS.2014.25
https://doi.org/10.1109/ECRTS.2015.32
https://doi.org/10.1109/RTSS.2015.16
https://doi.org/10.1109/RTSS.2015.16


on Computers, vol. 53, no. 11, pp. 1462–1473, 2004,
Publisher: IEEE.

[25] S. Baruah and P. Ekberg, An ILP representation of Re-
sponse Time Analysis, 2021. [Online]. Available: https:
/ / research.engineering.wustl .edu/∼baruah/Submitted/
2021-ILP-RTA.pdf.

[26] M. Sudvarg, S. Baruah, and C. Gill, “Elastic Schedul-
ing for Fixed-Priority Constrained-Deadline Tasks,” in
2023 IEEE 26th International Symposium on Real-Time
Distributed Computing (ISORC), 2023, pp. 11–20. DOI:
10.1109/ISORC58943.2023.00014.

[27] M. Sudvarg, D. Wang, J. Buhler, and C. Gill, “Subtask-
Level Elastic Scheduling,” in Proceedings of the 45th
Real-Time Systems Symposium (RTSS), Dec. 2024.

[28] L. A. Wolsey, Integer Programming, 2nd. Hoboken, NJ,
USA: John Wiley & Sons, Inc., 2021.

[29] K. Bestuzheva et al., “The SCIP Optimization Suite
8.0,” Optimization Online, Technical Report, Dec. 2021.

[Online]. Available: http : / /www.optimization- online .
org/DB HTML/2021/12/8728.html.

[30] E. Bini and G. C. Buttazzo, “Measuring the per-
formance of schedulability tests,” Real-time systems,
vol. 30, no. 1, pp. 129–154, 2005, Publisher: Springer.

[31] C. L. Liu and J. W. Layland, “Scheduling algorithms
for multiprogramming in a hard-real-time environment,”
Journal of the ACM (JACM), vol. 20, no. 1, pp. 46–61,
1973.

[32] D. Griffin, I. Bate, and R. I. Davis, Dgdguk/drs, ver-
sion v2.0.0. DOI: 10.5281/zenodo.4264857. [Online].
Available: https://github.com/dgdguk/drs.

[33] D. Griffin, I. Bate, and R. I. Davis, “Generating Utiliza-
tion Vectors for the Systematic Evaluation of Schedu-
lability Tests,” in IEEE Real-Time Systems Symposium,
RTSS 2020, Houston, Texas, USA.

9

https://research.engineering.wustl.edu/~baruah/Submitted/2021-ILP-RTA.pdf
https://research.engineering.wustl.edu/~baruah/Submitted/2021-ILP-RTA.pdf
https://research.engineering.wustl.edu/~baruah/Submitted/2021-ILP-RTA.pdf
https://doi.org/10.1109/ISORC58943.2023.00014
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
http://www.optimization-online.org/DB_HTML/2021/12/8728.html
https://doi.org/10.5281/zenodo.4264857
https://github.com/dgdguk/drs

	Introduction
	Background and Related Work
	EDF Scheduling of MPS Tasks
	Background
	ILP Representation

	FP Scheduling of MPS Tasks
	Iterative Solution
	ILP Solution

	Partitioned Fixed-Priority Scheduling
	Evaluation
	EDF ILP
	Fixed-Priority Uniprocessor ILP
	Fixed-Priority Partitioned Multicore ILP

	Conclusion
	Acknowledgements

