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Abstract
As real-time embedded systems (RTES) become more
prevalent in society, their security is increasingly im-
portant. However, as these systems are often safety or
mission critical, it is imperative that security instru-
mentations do not violate real-time constraints, which
could cause improper or even unsafe function. There-
fore, there is a strong need to both ensure correct real-
time performance and maximize system security. This
paper describes how this can be viewed as an optimiza-
tion problem, and presents two case studies where this
optimization is formulated as a Mixed Integer Linear
Programming (MILP) problem. The first optimization
shows how optimization techniques can be applied to
choose defenses given available system slack. The sec-
ond demonstrates how a specific security instrumenta-
tion can be tuned to maximize security subject to an
allowable runtime expansion. The paper concludes with
a discussion and directions for future work.

1 Introduction
Historically, enterprise and general-purpose systems
have been the target of the majority of cyberattacks.
In recent years, however, attacks on real-time and
embedded systems (RTES) have become increasingly
prevalent, as attackers have targeted systems such as
IoT devices (e.g., Mirai botnet [2]), automotive ap-
plications [28], and industrial control systems (ICS)
(e.g., TRITON attack [13]). Heart monitors have be-
come non-functional during procedures due to security
counter measures (i.e., virus scan) [16]. In a recent grim
milestone, the first death attributed to a ransomware
attack occurred at a German hospital, which was forced
to turn a patient away after its systems were shut-
down [14].The United States Department of Homeland
Security issued an advisory for a collection of vulner-
abilities called “BadAlloc” reported to affect over 25
different real-time operating systems (RTOSes) used in
commercial applications ranging from industrial con-
trol to IoT to medical devices [35].

The increased security pressure on RTES necessi-

tates stronger defenses. However, defenses for RTES
face design constraints that do not apply to general-
purpose systems, including: size, weight, and power
(SWAP); limited or impoverished computing plat-
forms; and notably, real-time considerations. Therefore,
many of defensive techniques face challenges to adop-
tion in the RTES context. There are always overhead
costs associated with using any security strategy, and
so in order for a defense to be safely incorporated into
an RTES, there must be assurances that it will not
violate the constraints of the system.

This gives rise to a number of important problems
and opportunities for the application of optimization
techniques for RTES. Specifically, how should a system
be maximally protected against security threats sub-
ject to real-time constraints? In general it is difficult,
if not impossible, to precisely quantify security as at-
tackers can exploit a system by violating assumptions
not considered in security quantization. Nonetheless,
there exist many security metrics that can be useful
for determining which defenses are stronger than oth-
ers, and therefore guide more secure system designs
through security-cognizant optimization.

In this paper, we provide a discussion and exam-
ples of formulating optimizing security strategies while
maintaining real-time constrains as a Mixed Integer
Linear Programming (MILP) problem. We first discuss
optimizing the choice of defense strategies for each task
in a task set (Inter-defense Optimization). We then dis-
cuss optimizing a single “tuneable” security strategy on
a task-by-task basis so that the system as a whole has
the highest level of security possible given a particu-
lar defensive strategy (Intra-defense Optimization). We
end with a discussion of real-time security optimization
and potential future work.

2 Background
In this section, we define our task model and notation,
and provide background on runtime security mecha-
nisms and their performance impacts.
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2.1 Task Model
We consider a task system T = {τ1, . . . , τn} of n tasks,
scheduled on m processors. Each task τi is composed of
a (potentially infinite) sequence of jobs, that are spo-
radically released with a minimum inter-arrival time
of Ti. C0

i is the worst case execution time (WCET)
of τi when no security mechanism in place. Each task
must complete by its deadline Di. We assume implicit-
deadline tasks, and therefore Di = Ti. The utilization
of a task is defined by ui = C0

i /Ti, and the task-system
utilization is U =

∑
τi∈T ui.

2.2 Defenses for RTES
The domain and range of cyber attacks is immense. In
this work, we limit our discussion to defenses against
control-flow hijacking attacks. These are attacks in
which a malicious actor utilizes a memory-corruption
vulnerability and attempts to redirect the flow of exe-
cution in the targeted system [32].

Defenses against such control-flow hijacking attacks
universally work by changing runtime properties of the
protected application to incorporate security checks
or moving code or data to increase uncertainty and
apparent complexity for attackers and increase the
costs of their probing efforts, thus preventing success-
ful exploitation of vulnerabilities (i.e., moving-target
defenses [22]). Therefore, adopting any of the defenses
considered can be modeled as having some security
benefit, and some overhead on the execution cost C0

i

of the protected task.
We note that many other security approaches, such

as intrusion and anomaly detection, can be realized as
independent tasks, rather than an augmentation to the
protected task as we consider. However, these however
do not prevent exploitation as runtime defenses do, but
instead allow an operator to detect malicious activity
and respond accordingly. We refer the interested reader
to [17,18] for a discussion of such techniques.

2.3 Runtime Defenses
Here we review several runtime defenses, how they
work, and how they affect real-time performance.

Enforcement-based defenses. Enforcement-based
defenses protect against memory-corruption attacks by
enforcing some type of policy on program execution.
This is usually done by gathering metadata about the
program, either at compile or runtime, and then insert-
ing checks into the program to verify its state against
this metadata. What metadata is collected and where
checks are inserted depends on the policy being en-
forced. Enforcement-based defenses can be further di-
vided into memory-safety policies or various weaker
policies. Memory safety is a concept that considers

pointers to be unforgeable capabilities to memory ob-
jects [20]. As such, pointers are restricted to point only
within the memory object to which they correspond.
SoftBound [29] is a memory-safety enforcement-based
defense that enforces spatial memory safety by creat-
ing metadata for all pointers (code or data) and insert-
ing runtime checks to validate the integrity of pointers.
While very strong, SoftBound also has exceptionally
high overhead compared to other defenses.

There are also enforcement-based defenses that ap-
ply weaker policies than full memory safety, focusing
on limiting the use of corrupted code pointers. For ex-
ample, control-flow integrity (CFI) [1] is a defense that
leverages runtime monitors to detect control-flow hi-
jacking attacks. This is done by identifying all of the
legal transitions between functions for a given program
in a control-flow graph (CFG). If a process attempts
to make a transition that is not included in the CFG,
the monitors will halt the process [8]. This is a strictly
weaker policy than memory safety because it only pre-
vents the overwriting of code pointers, and not for ex-
ample, data pointers or data values.

Other enforcement-based approaches include code
pointer integrity (CPI) [24], Safestack [10], and shadow
stacks [9].

Randomization-based defenses. Randomization-
based defenses are the other class of runtime defenses
and they mitigate attacks by randomizing the code or
its environment, thus preventing an attacker from ex-
ploiting vulnerabilities by creating uncertainty about
important information (e.g., addresses of code re-
gions). Randomization-based defenses are categorized
based on their granularity.

ASLR [31] is a defense that is used by default on
most modern operating systems. This randomization
has the coarsest granularity, shifting the entire exe-
cutable section in memory by a randomly selected value
at load time. Other randomization-based defenses we
consider include compiler-assisted code randomization
(CCR) [23], which permutes functions or basic blocks
within the binary at compile time, and the Multicom-
piler [21], which inserts random no-operations (no-ops)
into the binary at compile time to change the layout
and offsets of individual instructions.

2.4 Tuneable Defenses
There are a few new defenses that enable a more fine-
grained trade-off between security and performance.
One such example is the partial context-sensitive
pointer-integrity framework (ParCSPI) [36]. ParCSPI
uses a technique called pointer authentication to en-
sure the integrity of a pointer traversed at runtime,
i.e., that the pointer has not been corrupted to point
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to a malicious target. The tuneable parameter is de-
rived from context sensitivity, or where the pointer is
being used. A pointer may be valid in one calling con-
text, or location in the code, but invalid in another.
Enabling full context sensitivity can be comparatively
expensive, even though it provides the strongest secu-
rity. The ParCSPI framework therefore allows for op-
timizations to be performed to decide where context
sensitivity should be applied to maximize security for
a given overhead allowance.

As a simplistic example, consider an application
with one code path that is much longer than the oth-
ers, and represents the WCET. Applying context sen-
sitivity to pointers on that code path will increase the
WCET. However, context sensitivity can be applied to
pointers on other code paths, and so long as they do
not increase the execution time of those paths to longer
than the WCET of the longest path, they do not af-
fect the WCET. If some WCET expansion is allowable,
shorter paths may enjoy more context sensitivity, while
the longer path may allow some, but not complete con-
text sensitivity.

3 Inter-defense Optimization
We next describe a case study of an optimization to
determine how to protect each task to optimize defen-
sive coverage while respecting real-time constraints. If
a system has low utilization and abundant slack time,
perhaps stronger, higher-overhead defenses are prefer-
able to lower-overhead defenses that may not provide
as much defensive coverage. Conversely, for a system
with high utilization and minimal slack time, only low-
overhead defenses may be feasible. This gives rise to
an important optimization problem: how can we maxi-
mize the defensive coverage of a real-time system while
maintaining schedulability? To answer this question,
we develop a new optimization framework that max-
imizes defensive coverage while maintaining schedula-
bility. We then present a case study informed by our
empirical results that demonstrates its effectiveness.

Quantifying security as a metric is widely known
to be a difficult and often imprecise endeavor [19]. At-
tackers do not comply with stochastic models, and new
attack techniques are constantly being developed that
undermine previously held assumptions [34]. Nonethe-
less, efforts at quantifying security can still be useful
towards designing new defenses, and encouraging the
adoption of stronger security postures.
QUASAR: In this case study we consider the
defensive-coverage metric from the Quantitative Attack
Space Analysis and Reasoning (QUASAR) tool [33].
QUASAR is based on an expert-developed model of
fine-grained individual capabilities that are required to

carry out control-flow hijacking attacks. This model
can then be synthesized into a Boolean formula in
which any solution represents a valid attack. Defenses
constrain what capabilities are available to an attacker,
and can be incorporated into the Boolean formula,
thereby limiting the number of solutions. While gen-
erally the problem of solution counting (#SAT) is NP-
hard, QUASAR leverages efficient algorithms that scale
easily to the model size. We use QUASAR to determine
the defensive coverage provided by individual defenses.
Defensive coverage represents the percent of valid at-
tacks that are prevented by a defense.
QUASARRT. We build upon the results of QUASAR
and incorporate the defensive overheads from our pre-
vious experimental evaluations [7] to develop a new
defensive-optimization framework, QUASARRT. This
optimization uses the defensive overheads from our em-
pirical evaluations, and the defensive coverage of sev-
eral defenses considered in QUASAR as inputs to a
mixed-integer linear program (MILP) that can identify
the optimal defensive coverage for a given task system.
We describe this MILP after first introducing relevant
notation.

We assume Global Earliest Deadline First (EDF)
scheduling and consider that schedulability is evaluated
via a utilization-based schedulability test. For a unipro-
cessor system, earliest-deadline first (EDF) is optimal
and therefore a task system is schedulable if U ≤ 1.
On a multiprocessor system with m processors, global
EDF has been proven soft-real-time optimal in that it
provides bounded deadline tardiness, and thus a task
system is soft-real-time schedulable if U ≤ m [12]. In
our experimental evaluations, we assume soft-real-time
schedulability, i.e., deadline tardiness is bounded, but
note that other utilization-based tests could easily be
substituted in the optimization. We note that exploring
optimizing defensive coverage in the context of more so-
phisticated schedulability tests and priority-assignment
schemes is an interesting avenue of future work.

We assume a set D of defenses, for which each de-
fense dj ∈ D is defined by a defensive coverage cj de-
rived from QUASAR and a multiplicative defense cost
δj . Thus, the execution time of τi when dj is applied is
C0

i δj . We assume that δj is a static value for all tasks.
In practice you could have task-specific values, but that
is beyond the scope of this paper.

QUASARRT MILP formulation. All task and de-
fense parameters in the QUASARRT MILP are con-
stants with respect to the MILP. The only variables
are binary indicator variables that encode whether a
defense is applied to a task. These variables are en-
coded as xi,j for τi ∈ T and dj ∈ D. Consequently, the
QUASARRT MILP is formulated as follows:
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Maximize:
∑
τi∈T

∑
dj∈D

xi,jcj

Subject to:
∑
dj∈D

∑
τi∈T

C0
i δjxi,j ≤ m∑

dj∈D

xi,j ≤ 1 ∀τi ∈ T

C0
i δjxi,j ≤ Ti ∀τi ∈ T ,∀dj ∈ D

The objective function of this MILP is the sum of
the defensive coverage for all enabled defenses for each
task. The first constraint set encodes that after defenses
are applied, the total utilization of the task system does
not exceed the total platform utilization.1 The second
constraint set encodes that at most one defense can
be applied to each task. This assumption is based on
the observation that in general, defenses do not nec-
essarily compose with one another. For example, in
the case study we present below, we consider address-
randomization defenses of differing granularities, which
do not easily compose, for example, because they are
alternative compiler tools. Furthermore, the overheads
of the composition of defenses have not been evaluated.
Relaxing this condition is fertile ground for future re-
search. Finally, the last constraint set encodes that the
execution cost of each task after including defensive
overhead should not exceed the deadline, otherwise the
task itself would not be schedulable.

QUASARRT case study. To demonstrate
QUASARRT, we conducted a schedulability study. We
considered m ∈ {2, 4}, with task systems with total
utilization U ∈ {0.05, 0.1, . . . , 4.0}. All per-task utiliza-
tions and periods were generated using distributions
documented in SchedCAT [6] and used in prior work
(e.g., [5]). This resulted in 108 schedulability graphs.

We compare the QUASARRT defensive plan against
three randomization defenses: ASLR, CCR, and the
Multicompiler (MC), as well as an undefended sys-
tem. (Selfrando [11], and several other enforcement-
based defenses considered are not currently modeled
in QUASAR [33], but could be.) For each considered
defense, we assume the defense was applied to all tasks.
For the purpose of computing the average defensive
coverage, we assume if a task system is unschedulable,
it has zero defensive coverage. This case study demon-
strates how QUASARRT can be used to determine the
best granularity of randomization to be applied across
different tasks.

An example schedulability and defensive-coverage
graph is depicted in Fig. 1. In the top inset, soft

1Alternative utilization-based schedulability conditions could
be easily substituted here.
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Figure 1: Schedulability graph evaluating randomiza-
tion defenses.

real-time schedulability is depicted, and in the corre-
sponding bottom inset, the average defensive cover-
age of the generated task systems is plotted. Observe
that QUASARRT has the same schedulability as no de-
fenses. This is because the optimization will disable all
defenses if necessary to ensure schedulability. This is
opposed to defending all tasks with a given defense,
where overheads cause varying degrees of utilization
loss. Observe that the defensive coverage begins to de-
cline rapidly when the task system is not schedulable
using CCR. For these higher-utilization task systems,
QUASARRT defends as many tasks as possible with
the stronger CCR, while defending the remaining with
the weaker ASLR or no defense at all. As a result,
QUASARRT dominates both schedulability and defen-
sive coverage of approaches that universally apply a
single defense, or no defense at all.

4 Intra-defense Optimization
Next, we review another case study of optimization to
balance security with runtime constraints [36].2 Given
a tunable defense strategy such as ParCSPI, we wish to
choose an optimal policy for each task in a task set in
order to maximize the total security score without vio-
lating schedulability. Thus, we designed a Mixed Inte-
ger Linear Programming (MILP) optimization problem
that allows us to maximize the security while guaran-
teeing that the task system remains schedulable.

Assume a trade-off table for each task τi has been
generated using analysis methods described in [36].
The trade-off table entries represent security score and

2This section is adapted from [36], but included to provide
another case study in security optimization.
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WCET expansion pairs. Each row k in the table con-
tains an overhead ϵik and security score Sik pair for
some security policy πik for τi. Let the number of en-
tries in this table be hi. We will call the cost of task
τi ∈ T with the overhead of the selected security policy
Ci.

MILP Formulation. In order to represent choosing a
policy, a boolean variable Xik is defined for each πik.
Xik = 1 implies that τi is using πik and so achieving a
security score of Sik and incurring an overhead of ϵik.

Thus, the optimization criterion is as follows:

maximize

n∑
i=1

hi∑
k=1

XikSik (1)

A task can only use one policy at a time. Therefore
the following constraint is introduced:

∀τi ∈ T :

hi∑
k=1

Xik ≤ 1 (2)

This enforces that at most one Xik is set to 1.
In order to require that all tasks must remain

schedulable, schedulability can be represented as an
Integer Linear Program as described by Baruah & Ek-
berg [3].

They assume deadline-monotonic (DM) scheduling
on a single processor and that therefore, the task set has
been sorted by relative deadlines so that the priority of
τi is greater than the priority of τi+1.

The ILP representation of response-time analysis in
[3] proceeds as follows:

For each τi ∈ T a new variable Ri is defined that
represents the response time of τi. In order for the task
system to remain schedulable, each task must meet its
deadline Di, so a new constraint is introduced:

∀τi ∈ T : Ri ≤ Di (3)

They introduce a new variable to represent the ⌈Ri/Tj⌉
term from standard response time analysis. For each
task τi and each higher-priority task τj , they create a
new non-negative integer variable Zij that represents
an upper bound on the number of times that τj can run
during the response time of τi. Thus, a new constraint
is defined:

Zij ≥
(
Ri

Tj

)
(4)

Finally, in order to represent the mathematical
model of schedulability Baruah and Ekberg use the fol-
lowing constraint:

∀τi ∈ T : Ci +

i−1∑
j=1

ZijCj ≤ Ri (5)

However, this assumes that the cost for each task
is a constant. We violate that assumption since the
overhead of each possible policy is different. Thus, it
is necessary to differentiate between the original cost
of τi which here is notated as C0

i and the actual cost
of τi which is Ci. [36] defines Ci in terms of C0

i as:

Ci = C0
i

(
1 +

hi∑
k=1

(Xikϵik)

)
(6)

Note that since only one Xi can be true at any time,
and each Xi is a binary variable, the original cost will
only be altered by the chosen ϵi.

For ease of presentation, they define an intermediate
variable Hi that represents the effect of higher priority
tasks on the response time of τi. In Constraint (5),

this is equivalent to
∑i−1

j=1 Zij × Cj , however given the

definition of C in terms of C0, it can be expressed as:

Hi =

i−1∑
j=1

[(ZijC
0
j ) + C0

j

hj∑
k=1

(Zij ×Xjk × ϵjk)] (7)

Note that Zij has been distributed into the summation.
Importantly, it can be seen that there is the multipli-
cation of two variables ZijXjk making the constraint
seemingly non-linear.

[36] gets around this problem by leveraging the ob-
servation that the result of the multiplication is either
Zij or 0 since Xjk is a boolean. Thus, they can use well-
known integer-programming techniques for linearizing
products. They define new variables Yijk to represent
the product ZijXjk. Additionally, they define a con-
stant ZU

ij = ⌈Ti/C
0
j ⌉ as an upper bound for Zij . Since

it is required that everything remains schedulable, and
τj will not run more often than its period. They can
upper bound Zij with the number of times that C0

j

could fit into Ti. The following constraints are defined
for each Yijk:

0 ≤ Yijk

Yijk ≤ XjkZ
U
ij

0 ≤ Zij −Yijk

Zij −Yijk ≤ (1−Xjk)Z
U
ij

(8)

The first two inequalities ensure that Yijk = 0
when Xjk = 0. The second two inequalities ensure that
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Figure 2: Optimal average security scores per task vs
total utilization of synthetic task sets.

Yijk = Zij when Xjk = 1. They can now use Yijk to
update the definition of Hi so that it is linear:

Hi =

i−1∑
j=1

(ZijC
0
j ) + C0

j

hj∑
k=1

(Yijk × ϵjk)

 (9)

Finally, the defined schedulability constraint is:

∀τi ∈ T : Ci +Hi ≤ Ri (10)

Subject to the defined constraints, the defined MILP
optimization problem can choose policies that maxi-
mize the sum of the security scores for each task while
guaranteeing that the task set remains schedulable.

4.1 Case-Study Evaluation
In order to evaluate this case study, we present two
experiments. The first experiment aims to determine
the optimal security level of synthetic task sets given
different original system-utilization levels. The second
experiment evaluates the trade-off between solver per-
formance vs. execution time. These experiments are run
over a randomly generated synthetic task set assigning
each task real world security vs. overhead trade-offs de-
termined from the BEEBS dataset [30].

The trade-offs are represented in a “trade-off table”
for each task. Schedcat TaskGenerator is used for the
synthetic task-set generation [6]. The optimization used
the GNU Linear Programming Kit (GLPK) solver us-
ing the PuLP API on an 8 Core, 3.0GHz CPU with 16
GiB Memory.

For the optimal security level experiment, the solver
is run for each system-utilization level under test. Total
utilizations in {0.1, 0.2, . . . , 0.9} are considered. Task
periods are generated by sampling uniformly among
[10, 100]ms. This is equivalent to the built-in ‘uni-
moderate’ distribution as used in [5, 6]. For the task
utilizations, uniformly random choices from [0.1, 0.4]
are used. This is the built-in ’uni-medium’ distribution.

Figure 3: Average security score found over time.

Over 3000 task sets per utilization level were gener-
ated and any task sets that were not schedulable be-
fore instrumentation were discarded. We randomly as-
signed a trade-off table to each task in the task set from
the tables measured from the BEEBS benchmark. Fi-
nally, the optimization was performed on each task set
using a time limit of 1 hour per optimization. The se-
curity scores per task were averaged for each generated
task set and then averaged per generated system uti-
lization value. A graph of results of this is in Figure 2.

We observe the average per-task security score de-
creases as the original system utilization increases. This
is because in order to achieve higher security there is
more overhead. Thus, when the original utilization is
higher and there is less available time, it is not possible
to achieve as high a security score.

MILP is a known NP-complete problem, so it is im-
portant to evaluate its scalability. [36] found that for
task systems with more than approximately 10 tasks,
the execution time was often over one hour. However,
MILP solvers can often quickly find feasible solutions,
and much of the execution time can often be spent
finding the optimal value. Therefore, the solution qual-
ity is evaluated over time that the solver has run. The
solutions given by the solver are compared after 5 sec-
onds, 10 seconds, 20 seconds, 1 minute, 5 minutes, 15
minutes, 30 minutes, and 1 hour.

For this experiment five unique task sets are gener-
ated. The maximum utilization is defined to be 0.6. In
this experiment the Schedcat ‘uni-light’ distribution,
which is drawn uniformly from [0.001, 0.1] is used for
the period in order to increase the number of gener-
ated tasks. These settings are chosen to make the op-
timization more difficult and to force the number of
tasks in the task set to be higher and thus to make the
optimization more difficult. Additionally the tasks are
limited to using a singe trade-off table for consistency.
Specifically, the tasks use the table for the BEEBS st

program. The solver was run for each task set and time
limit and the per-task average security score was col-
lected. The results of this experiment can be found in
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Figure 3.
We observe that while one hour may not be long

enough to definitively determine the optimal solution,
the average security score converges quickly, demon-
strating that while the optimal solution may not be
easily found, this formulation can be practically ap-
plied to improve the security posture of the system,
even for larger task systems.

5 Discussion and Related Work
The optimization discussed in Section 4 can be easily
extended to support multiple partitioned processors.
Starting from the multi-processor MILP response time
analysis presented by Ekberg and Baruah [15], a similar
derivation to Section 4 could be applied to trivially ex-
tend the technique to partition-based multi-processor
scheduling. We note, however, that many other results
from Ekberg and Baruah [15] suggest that there is not
likely to be an ILP formulation for other schedulers, or
task systems with constrained or arbitrary deadlines.
For example, they showed that EDF scheduling of spo-
radic tasks with constrained deadlines is both strongly
NP-hard and coNP-hard, and therefore unlikely to be
in either class, and thus likely cannot be formulated as
an ILP in polynomial time.

There has been other recent work on optimizing se-
curity subject to real-time constraints. Di Leonardi et
al. [25] presented a optimization problem that allows
different combinations of security techniques to be ap-
plied for each basic block in a task set while main-
taining system-wide schedulability. It is both an inter-
defense and intra-defense optimization technique as it
chooses between different security techniques for each
block as well as determines which basic blocks a given
security technique is best applied within a single task.
However, the optimization can only work with tech-
niques that both apply only on the basic-block level
and can safely be composed with other technique. We
note that defense composition can be challenging both
in practical terms, as different defenses can be imple-
mented in different toolchains, and theoretically, as in
some cases different defenses have different assump-
tions or limitations, and mixing them can invalidate
such assumptions. Cross-language attacks are one such
example [27].

Lin et al. [26] presented an inter-defense optimiza-
tion formulation that assigns groups of security services
to best fulfil the security requirements of a task system.
Optimization techniques have also been applied to min-
imize the worst-case performance effects of a security
protection called data-flow integrity (DFI) [4], but that
work was focused on optimizing the protection of an in-
dividual task. Interesting future work could investigate

incorporating similar techniques into a system-wide op-
timization, and/or considering it in conjunction with
other defensive techniques.

6 Conclusion
Real-time embedded systems often require strong secu-
rity guarantees. However, security defenses can break
real-time constraints if their effects are not accounted
for. We provide a discussion of optimization for security
in RTES. We show two case studies of MILP formula-
tions to maximize security while maintaining schedula-
bility.
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