
Optimizing Lock Granularity for Non-Nested
Resource Access under the Priority-Ceiling Protocol

Catherine E. Nemitz
Davidson College

Davidson, North Carolina, USA
canemitz@davidson.edu

Tanya Amert
Carleton College

Northfield, Minnesota, USA
tamert@carleton.edu

Abstract—When multiple tasks require mutually exclusive
access to shared resources, a trade-off arises between the duration
of time that one task holds a resource (i.e. the duration of
a critical section) and the blocking suffered by other tasks.
Prior work has explored this trade-off in the context of a
single shared resource. In this paper, the decision of grouping
individual accesses into critical sections is formulated as an
optimization problem for systems with a single shared resource.
This formulation is also extended to a limited setting with
multiple resources in which nested resource access is disallowed.
The scale of the resulting optimization problem is explored via
experiments with synthetically generated task sets. Additionally,
a discussion is presented of the challenges in extending this work
to general nesting of shared-resource accesses.

Index Terms—Real-time systems, shared resources, mutual
exclusion, uniprocessor scheduling, schedulability

I. INTRODUCTION

Tasks in a hard real-time system may require the use of
shared resources including hardware accelerators and regions
of shared memory. Each task may make multiple accesses to a
given resource, as is common in applications relying on access
to a graphics processing unit (GPU). Access to these resources
must be protected to ensure anticipated timing behavior and
correct execution of all tasks. A task executes within a critical
section when it is guaranteed protected access to a resource.
A critical section may include multiple accesses to a resource,
possibly with interleaving intermediate computations. Defining
which access(es) belong to each critical section can be done
on a per task basis and ensure correct execution behavior.

Unfortunately, in a real-time system, deciding the assign-
ment of resource accesses to critical sections in isolation can
result in a system that is unschedulable, i.e. unable to meet its
timing requirements. The time when a task is executing in a
critical section can delay the execution of higher-priority tasks,
causing priority-inversion blocking (blocking). Therefore, con-
ventional wisdom suggests making each critical section as
short as possible, i.e. containing as few accesses as possible.

Maintaining short critical sections requires a task to have
more critical sections than if accesses were further combined.
However, when locks are used to protect resource access,
there is time associated with each acquisition and release of
the lock. Furthermore, when a task accesses a resource after
use of that resource by a different task, it may experience a
longer execution time than when repeatedly using the resource

without an interleaving task; this behavior has been observed
in the use of GPUs [2]. We refer to any such delays that are
incurred when resource accesses are separated into different
critical sections as overhead. Combining multiple accesses into
a single critical section reduces the overhead incurred by a task
and, in turn, reduces its total execution time.

Therefore, there is a tension between reducing the delays
induced on higher-priority tasks (by having few accesses per
critical section) and reducing the execution time, which also
allows more execution of lower-priority tasks (by having many
accesses per critical section). Prior work has shown how to
optimally assign accesses to critical sections for fixed-priority
systems with only a single shared resource protected by the
Priority Inheritance Protocol by using a greedy algorithm [2].

In this work, we formulate this problem of assigning re-
source accesses to critical sections as an optimization problem.
This formulation provides a framework for more complex
resource-sharing systems; we additionally formulate the opti-
mization problem for systems with multiple shared resources
with non-overlapping critical sections, and discuss the exten-
sion to overlapping (i.e., nested) critical sections.

II. BACKGROUND

We now introduce our task and resource model, detail our
scheduling and synchronization assumptions, and discuss prior
work on critical-section granularity as well as response-time
analysis formulations as optimization problems.

Task model. We consider a task system τ = {τ1, τ2, · · · , τn}
of n tasks. Each task τi releases a (potentially infinite)
sequence of jobs, with jobs spaced by a minimum inter-arrival
time of Ti time units; we refer to a generic job of task τi as
Ji. A job Ji of task τi executes for at most its worst-case
execution time (WCET) of Ci time units, and must complete
execution within a relative deadline of Di ≤ Ti time units
after its release. We define the response time of a job Ji to
be the time between its release and completion, and let Ri be
the worst-case response time of any job Ji of task τi.

Resource model. Some tasks may require access to shared
resources. When job Ji requires access to a shared resource
ℒk, it issues an acquisition request. Job Ji holds the resource
from the time the acquisition request is satisfied until job Ji
issues a release request. We say that a job experiences priority-

inversion blocking (blocking) at any time instant that it has
an unsatisfied acquisition request due to a resource held by
a lower-priority job. The instructions executed while job Ji
holds resource ℒk comprise a critical section.

Uniprocessor scheduling. We focus on uniprocessor plat-
forms scheduled using a fixed-priority scheduling policy; we
assume that tasks are indexed in order of decreasing priority,
e.g. that task τ1 has higher priority than task τ2.

Synchronization protocols. Requests to acquire and release
shared resources can be managed via synchronization proto-
cols, such as the Priority Ceiling Protocol (PCP) [11]. Under
the PCP, the highest priority of any task that accesses a given
resource ℒk is called the priority ceiling of that resource and
denoted PC(k). When a job Ji issues a request, it must wait
until its priority exceeds that of the highest priority ceiling
of any held resource ℒk. Thus, Ji may be blocked when a
resource’s priority ceiling is at most the priority of task τi
(i.e. PC(k) ≤ i).

A job Ji may experience blocking from a lower-priority job
Jj holding a resource with a higher priority ceiling than the
priority of Ji. Even if Ji does not access any resource, it may
be blocked by Jj executing a critical section when Jj has
inherited the priority from a blocked task with higher priority
than Ji. A job may by blocked for the duration of at most
one such critical section, regardless of the number of requests
it makes or the number of resources it requires (Theorem 12
from [11]). If there is only one resource in the system, this is
also true of the Priority Inheritance Protocol (PIP). As with
the PCP, the PIP enforces that a job Ji holding a resource
inherits the priority of the highest priority job blocked by Ji.
Considerations of a priority ceiling are not included in the PIP.

Access model and critical-section granularity. We define
an access to a shared resource to be the smallest sequence
of instructions that together require mutually exclusive use of
that resource. We assume that each instruction within a job
is part of either an access segment utilizing a single shared
resource1 or a non-access segment that does not require any
shared resources. We let Ai and Γi denote the tuples of access
and non-access segments of task τi, respectively. Similarly, we
label the νth access segment of a job of task τi as αν

i , and
use γν

i to indicate the following non-access segment2. We use
|αν

i | (resp., |γν
i |) to indicate the duration of a given access

(resp., non-access) segment3. See Fig. 1a for an illustration of
the access and non-access segments of an example task.

A critical section is therefore a sequence of access and non-
access segments. A critical section that contains accesses for
only a single resource is said to be non-nested, while a critical
section that contains accesses for multiple resources is said to
be nested.

Example 1. The assignment of access segments to critical
sections depicted in Fig. 1b–d illustrates how some non-access

1We explore in Sec. III-C the implications of relaxing this assumption.
2Thus, non-access segments are indexed from 0, access segments from 1.
3A non-access segment may have zero duration.

1 2 4 4 2 3 2

 xi,1 = 0 xi,2 = 1 xi,3 = 1

(b)

(a)

(c)

(d)

 xi,1 = 0 xi,2 = 0 xi,3 = 1

 xi,1 = 0 xi,2 = 0 xi,3 = 0

 yi,1 = 3 yi,2 = 11 yi,3 = 16

 yi,1 = 3 yi,2 = 5 yi,3 = 10

 yi,1 = 3 yi,2 = 5 yi,3 = 4

 ɣ0 α1 ɣ1 α2 ɣ2 α3 ɣ3

Fig. 1. An example task with (a) access and non-access segments annotated
with durations and (b–d) possible assignments of accesses to critical sections
with the associated overhead. Access and non-access segments are depicted
as blue and gray boxes, respectively. Critical sections are indicated with larger
purple boxes, with the per-critical-section overhead shown as red boxes.

A A

A

A A

(b)

(a)

(c) B

B

B

B

B B

nested critical
section for A and B

A

Fig. 2. Illustration of (a) a task with accesses for multiple shared resources, (b)
an allocation of those accesses to nested critical sections, and (c) an allocation
of accesses to non-nested critical sections.

segments may be included in a critical section. All critical
sections shown in Fig. 1 are non-nested.

In contrast, consider the task depicted in Fig. 2a. Here, each
access is annotated with which resource is required. Fig. 2b
illustrates one possible assignment of accesses to critical
section, in which the second critical section is nested; the
task requires access to multiple resources during its execution.
Instead, Fig. 2c shows an assignment that results in only non-
nested critical sections.

We assume the acquisition of a resource incurs some
additional overhead, which may be caused by factors such as
the synchronization protocol or the hardware itself, such as the
observed increased running time for the first access running on
a GPU [2]. The overhead associated with a given resource ℒk

is denoted Ok, which we simplify for single-resource systems
to O. The overhead at the start of each critical section is

depicted in Figs. 1 and 2.
The granularity of a critical section is the degree to

which multiple access segments are coalesced into the critical
section; coarse-grained critical sections are therefore those
containing many access segments, whereas the finest-grained
critical section is one composed of a single access segment.
Recent work [2] has demonstrated that the granularity of lock
acquisition and release requests can impact both response
times and schedulability. This impact comes from both the
differing resulting critical-section durations and the different
number of times overhead is incurred, which in turn impacts
the WCET.

Response-time analysis. The schedulability of a fixed-priority
system can be determined by conducting response-time analy-
sis to check if the worst-case response time of any task exceeds
its deadline. This approach has also been encoded as an Integer
Linear Program (ILP) by Baruah and Ekberg [4]. We build on
this approach and thus present the original ILP here.

The response time for a task τi is modeled by the variable
Ri. In order for the task system to be schedulable, the response
time of each task must be at most its deadline. This is encoded
in the first constraint.

∀i Ri ≤ Di (1)

The integer variable Zi,j captures the number of executions
a higher priority task τj may need to complete during the
period of a task τi.

∀i,∀j < i Zi,j ≥
Ri

Tj
(2)

For task systems without the blocking caused by shared
resources, the response time can then be constrained as mirrors
the typical response time analysis expression [8].

∀i Ci +

i−1∑
j=1

Zi,j ∗ Cj ≤ Ri

We update this expression in Sec. III-A to include blocking.
If any feasible solution to these constraints is found, then

the task system is schedulable: the value assigned to each Ri

must account for the impact of higher-priority workload and
ensure Ri ≤ Di. Minimizing the sum of all response times
forces each Ri to its minimal value, which then corresponds
to the response time of each task as computed with traditional
response time analysis [8].

minimize
∑
i

Ri

III. FORMULATING THE OPTIMIZATION PROBLEM

In this section, we present the formulation of the lock gran-
ularity problem. We begin with constraints on schedulability
and then incorporate blocking and the decision of how to group
resource accesses for a single resource. Then, we expand on
this approach to support multiple resources in a limited setting.

A. Problem Formulation for a Single Resource

We first consider a system with a single shared resource.
We use Eq. (1) and Eq. (2) without modification; deadlines
must be met and the same considerations about higher priority
workload exist when adding a shared resource to a system.

Incorporating blocking. In the presence of shared resources,
blocking must be accounted for in the response time analy-
sis. We therefore introduce the variable Bi to represent the
maximum blocking that task τi may incur. This method of
accounting for blocking mirrors how it is typically handled in
response time analysis [8].

∀i Ci +Bi +

i−1∑
j=1

Zi,j ∗ Cj ≤ Ri (3)

Next, we seek to bound the blocking Bi experienced by
task τi. In a system with only a single resource, we let PC
represent the priority ceiling of that resource. Recall that a
job Ji can only be blocked if task τi has priority index at
least that of the priority ceiling of a resource and Ji is being
delayed by a job of a lower-priority task4.

To ensure Bi correctly accounts for the maximum possible
blocking, we constrain it to be at least as large as any
individual critical section that could cause blocking. Note that
minimizing the sum of all Ri values in conjunction with Eq. (3)
effectively searches for the minimum allowed value for each
Bi. The minimum possible value for Bi is the duration of the
longest critical section of a lower priority task, matching the
worst-case behavior under the PCP. We define the variable
Lmax
i to represent the maximum duration of any critical

section of a job Ji.

∀i ≥ PC,∀j > i Bi ≥ Lmax
j (4)

Grouping accesses into critical sections. The above con-
straints all follow directly from the application of the schedul-
ing policy and resource access protocol. Note, however, that
the critical-section durations depend on how resource accesses
are grouped. To encode this decision, we introduce the binary
decision variable xi,ν , for which a value of 1 indicates that the
ν th access segment αν

i of τi is combined with the prior access
segment αν−1

i and the intermediate non-access segment γν−1
i

into the same critical section.
By definition, the first access of a task cannot be combined

with any prior access.

∀i, |Ai| ≠ 0 xi,1 ≤ 0 (5)

The solution of the model and resulting assignment of
values to the remaining decision variables define the critical
sections in a recursive manner.

Example 2. Consider the task τi depicted in Fig. 1a, with
Γi = (1, 4, 2, 2) and Ai = (2, 4, 3). By Eq. (5), we must have
xi,1 = 0. The solution of the optimization problem will assign
values to xi,2 and xi,3, with four possible assignments in total;

4Note that a larger index j > i indicates Jj has a lower priority than Ji.

three of these are depicted for a scenario with O = 1 in
Fig. 1b-d. For example, Fig. 1c depicts a scenario with xi,2 =
0 and xi,3 = 1, indicating that access α2

i is not combined with
α1
i (therefore α1

i composes its own critical section), and that
α3
i is combined in a critical section with α2

i , respectively.

The value assigned to a given xi,ν impacts the duration of
the critical section containing access αν

i . As such, we define
the variable yi,ν to represent the duration of a given critical
section up through the ν th access. As mentioned above, the
first access of a task cannot be combined with an earlier task.
Thus, the duration of the critical section through that access
is simply the access duration summed with the overhead.

Example 3. For the task depicted in Fig. 1b-d, xi,1 = 0, so
yi,1 = |α1

i |+O = 2 + 1 = 3.

We consider the first access of a task separately from later
accesses.

∀i, |Ai| ≠ 0 yi,1 ≥ |α1
i |+O (6)

Next we consider the implications of the two possible values
for an arbitrary xi,ν on the value yi,ν . If xi,ν = 0, then the ν th

access is the first of a critical section. As such, the critical-
section duration through that access is only the duration of the
access plus the overhead.

Example 4. In Fig. 1d, xi,2 = 0. Therefore, yi,2 = |α2
i |+O =

4 + 1 = 5.

Alternatively, if xi,ν = 1, then an earlier access began this
critical section and the overhead has already been included.
Thus, the duration through this access is given by the previous
duration value plus the durations of the interleaving non-access
and the ν th access: yi,ν−1 + |γν−1

i |+ |αν
i |.

Example 5. For the scenario depicted in Fig. 1b, xi,2 = 1,
and thus yi,2 = yi,1 + |γ1

i |+ |α2
i | = 3 + 4 + 4 = 11.

These two possibilities for the constraint on yi,ν described
above are applied with the indicator variable for whether αν

i

is grouped with the previous access:

∀i, |Ai| ≠ 0,∀ν > 1

yi,ν ≥ xi,ν ·
(
yi,ν−1 + |γν−1

i |
)
+ |αν

i |+ (1− xi,ν) · O
(7)

Example 6. Revisiting the task depicted in Fig. 1, we have
yi,2 ≥ xi,2 ·(yi,1+ |γ1

i |)+ |α2
i |+(1−xi,2) ·O = xi,2 ·(3+4)+

4 + (1− xi,2) · 1. In Fig. 1b, xi,2 = 1, resulting in yi,2 ≥ 11,
whereas in Fig. 1c-d, xi,2 = 0, resulting in yi,2 ≥ 5.

Bounding critical-section and job durations. The values of
yi,ν allow the maximum critical-section duration to be found,
which is necessary to compute the blocking in Eq. (4). Indeed,
the maximum critical-section duration is at least any partial
critical-section duration.

∀i,∀ν Lmax
i ≥ yi,ν (8)

Example 7. For the task depicted in Fig. 1, Eq. (8) results in
three inequalities: Lmax

i ≥ yi,1, Lmax
i ≥ yi,2, and Lmax

i ≥ yi,3.
For Fig. 1b, this enforces Lmax

i ≥ 16, whereas in the situation

depicted in Fig. 1c, the constraints capture the smaller critical
sections, enforcing Lmax

i ≥ 10 as the largest possible critical-
section duration.

Finally, recall that the motivation to consider combining
resource accesses is to reduce the number of times overhead
must be incurred, thereby reducing the total WCET, which
we represent with the variable Ci. The resulting WCET
must include all access and non-access durations, as well as
overhead for each critical section. For an arbitrary access αν

i ,
overhead must be included only if that access is the first of a
critical section, i.e. xi,ν = 0.

∀i Ci ≥
∑
ν

|γν
i |+

∑
ν

(|αν
i |+ (1− xi,ν) · O) (9)

Example 8. For task τi depicted in Fig. 1, with
∑

ν |γν
i | =

(1 + 4 + 2 + 2) = 9, this results in Ci ≥ 9 +∑
ν (|αν

i |+ (1− xi,ν) · O). For Fig. 1c, this yields Ci ≥
9+(2+1 ·1)+(4+1 ·1)+(3+0 ·1) = 9+3+5+3 = 20.

B. Expanding to Multiple Resources without Nesting
Now we expand upon the optimization problem formulation

presented in Sec. III-A to handle multiple resources. To ease
the development of an initial solution, we focus on a more
restricted setting by not allowing any nesting. That is, when
accesses are assigned to critical sections, accesses to different
resources may not be combined, as that would cause nested
access and necessitate additional accounting, explored in more
detail in Sec. III-C.

We present our formulation of the multi-resource problem
when nested access is not allowed, beginning with basic
schedulability constraints. Equations 1–3 can be applied to
this problem without modification; each task must still meet
its deadlines, account for the summation of higher priority
work, and apply the constraint of response time analysis.

Incorporating blocking. To constrain the blocking Bi pos-
sibly experienced by task τi, we introduce the variable Lmax

j,k

to denote the longest critical section of task τj for resource
ℒk and enforce that Bi must be at least this duration for
any critical section that could cause blocking under the PCP.
More specifically, we consider all lower-priority tasks and their
usage of any resource ℒk with a priority ceiling PC(k) at least
that of the priority of task τi.

∀k,∀i ≥ PC(k),∀j > i Bi ≥ Lmax
j,k (10)

Grouping access into critical sections. We again utilize a
decision variable xi,ν to indicate whether the ν th access is
combined with the prior access. Here, too, we enforce that
the first access cannot be combined with a prior access by
applying Eq. (5).

To enforce that no critical sections may be nested, we
disallow a resource access from being combined into a critical
section with another access to a different resource. For this,
we define a function res() that maps an access to its associated
resource.

∀i,∀ν > 1, res(αν
i) ̸= res(αν−1

i) xi,ν ≤ 0 (11)

We again account for the duration of a critical section
through the νth access with the variable yi,ν . Because the
overhead may differ per resource, we modify Eq. (6) to instead
account for the overhead of the resource in use (Ores(α0

i)
).

∀i, |Ai| ≠ 0 yi,1 ≥ |α1
i |+Ores(α0

i)
(12)

Similarly, the constraint on duration for later accesses also
is updated to include the resource-specific overhead.

∀i, |Ai| ≠ 0,∀ν > 1

yi,ν ≥ xi,ν ·
(
yi,ν−1 + |γν−1

i |
)
+ |αν

i |+ (1− xi,ν) · Ores(αν
i)

(13)

Bounding critical-section and job durations. In contrast to
the single resource problem, we now account for the maximum
critical-section duration on a per-resource basis. Thus, we
update Eq. (8) to enforce a constraint only on the relevant
duration, Lmax

i,res(αν
i)

, based on access αν
i .

∀i,∀ν Lmax
i,res(αν

i)
≥ yi,ν (14)

Computing the WCET is similar to our single-resource
approach (Eq. (9)), here accounting for the resource-specific
overhead that must be incurred if a given access is not
combined with a prior access (xi,ν = 0).

∀i Ci ≥
∑
ν

|γν
i |+

∑
ν

(
|αν

i |+ (1− xi,ν) · Ores(αν
i)

)
(15)

C. The Challenge of Nested Resource Access

As part of supporting multiple shared resources, the PCP
handles properly nested critical sections. However, the assign-
ment of accesses to critical sections is complicated if critical
sections may be nested.

Example 9. Consider the task depicted in Fig. 3a. If all of
these accesses were combined into critical sections starting
and ending with accesses for the same resource, it would
result in improperly nested critical sections, as depicted in
Fig. 3b. This could be remedied by requiring the task to
continue to hold Resource A until the completion of the last
access of Resource B, effectively resulting in an outer critical
section for A and an inner nested critical section for B, as
depicted in Fig. 3c. However, doing so unnecessarily increases
the duration of the critical section for A, but saves incurring
additional overhead for B in contrast to the critical sections
shown in Fig. 3d.

The above example raises two concerns: (1) how to account
for critical-section durations, and (2) how to ensure prop-
erly nested critical sections. For considering critical-section
durations, the critical section of each resource should be
computed separately, so that the blocking impact on higher
priority tasks can be modeled more precisely. This, however,
leads to challenges with the current approach; the critical-
section duration cannot be calculated in the recursive manner
previously described.

A

A A

(b)

(a) B B

B B B

B

A

A(d) B B A

A(c) B B BA

B

A(e) B A BB

Fig. 3. An example task with (a) access and non-access segments, (b) a
disallowed assignment of critical sections that results in improper nesting,
and (c-e) multiple allowed assignments of critical sections.

Example 10. Consider Fig. 3c. If using the recursive approach
described previously to track critical section duration, a deci-
sion variable for the second access of the task (for Resource B)
would need to account for both the start of a critical section
for Resource B and a possible continuation for Resource A.
However, if the fourth access (also for Resource A) ultimately
is not part of the same critical section, then a decision variable
at the second access should indicate to not include further
durations in the first critical section.

To enforce properly nested critical sections, it is necessary
to keep track of those which are ongoing.

Example 11. In Fig. 3c, it is necessary to keep track of the
outer critical section for Resource A in order to determine that
Resource A must be held until the release of Resource B.

The above example illustrates another scenario in which
tracking critical-sections duration may have additional chal-
lenges when nesting is allowed; a critical section for a given
resource may have an extended duration beyond any access to
that resource.

In addition to tracking ongoing critical sections, there may
be multiple separate critical sections for the same resource
nested in an outer critical section.

Example 12. In contrast to Fig. 3d which shows one outer
and one inner critical section, Fig. 3e depicts two separate
inner critical sections for Resource B, each nested within an
outer critical section for Resource A. This type of allocation
may be necessary when higher priority tasks for Resource B
have a more limited capacity to incur blocking than the tasks
that require Resource A.

The challenges discussed in this section must be answered
if nested critical sections are to be allowed. We leave such an
exploration to future work.

IV. EVALUATION

Specifying the lock granularity problem as an optimization
problem enables finding an assignment of accesses to critical

sections if one exists. However, this can come at the cost of
significant running time to find a solution. We therefore ex-
plore the size of the generated optimization problems to choose
lock granularity for tasksets from a range of experimental
setups to quantify the differences independent of optimization
solver or platform. Then, we look at the runtime of a few
specific examples.

Problem size. The size of an optimization problem can be
measured in the number of variables and constraints. The
number of tasks in a taskset has a clear impact on both
measures. For example, the number of response-time variables
and constraints from Eq. (1) and Eq. (3) grow linearly in the
number of tasks, while the number of accounting variables
of the form Zi,j and constraints from Eq. (2) and Eq. (4)
grow quadratically in the number of tasks. Other variables
and constraints depend on the number of tasks and the number
of resource accesses made by those tasks. This includes the
variables xi,ν and yi,ν and constraints like those resulting from
Eq. (7) and Eq. (8).

We look at a few different types of tasksets to illustrate the
impact different parameters have on problem size, borrowing
commonly used ranges [1], [6]. We consider tasksets randomly
generated using different per-task utilizations, either light
(0.001 – 0.1) or medium (0.1 – 0.4), up to a system utilization
of 0.6, with a goal number of eight accesses per task and
a single resource, for which tasks had a 0.6 probability of
accessing the resource. (Tasks with resource accesses had time
balanced between access and non-access segments, and if this
was not possible within the parameters, the task did not access
any resources.) Other parameters, like task periods and access
durations, were also set, but these do not impact the number
of variables or constraints.

We utilized the version 9.1.2 of the Gurobi optimization
solver [10] to build and execute our single-resource optimiza-
tion problem. For medium-utilization tasks, with an average
of 3.2 tasks per task set, the averages across 10 randomly
generated tasksets were 36.8 variables and 26.9 and 10.9 linear
and quadratic constraints, respectively (as reported by Gurobi’s
model attributes NumConstrs and NumQConstrs). For
light-utilization tasks there were an average of 13.2 tasks
across the 10 task sets; this resulted in an average of 194.8
variables, as well as 229.1 and 35.9 linear and quadratic
constraints, respectively.

Runtime. We formulated the single-resource optimization
problem in Python and ran the solver on a shared server,
with dedicated access to 8 multi-threaded cores and 16GB of
memory on a dual-socket machine equipped with two 2.30GHz
Intel Xeon Gold 5218 CPUs. We used the same experimental
setup as describe above, which included both medium- and
light-utilization tasks with short periods (3–33 ms) and GPU-
inspired accesses with durations of 10–200 µs. We assigned
task priorities in Deadline Monotonic [3] order.

Solving 10 randomly generated task systems with these
parameters resulted in an average runtime (measured as wall-
clock time during the Gurobi solving step) of 15.8 ms for

medium-utilization tasksets and 139.8 ms for light-utilization
tasksets. Filtering by feasibility, we found that feasible op-
timization problems took on average 51.6 and 174.5 ms for
medium- and light-utilization tasks, respectively; for infeasible
tasksets, the runtimes were respectively only 0.4 and 1.1 ms.

Generalizing to multiple resources. The results above are for
the single-resource case. For multiple resources, the number
of constraints generated by some of the inequalities remains
the same. For example, Eq. (13) results in the same number
of constraints, simply using different overhead values per
resource. Two inequalities differ from the problem for a single
resource. The number of constraints generated by Eq. (10)
grows linearly in the number of resources in the system and
quadratically in the number of tasks. Eq. (11) is unique to the
multi-resource case, and the number of constraints it generates
is based on the number of accesses for each task.

V. RELATED WORK

Prior work has considered the problem of grouping resource
accesses into critical sections for systems with only a single
shared resource [2]. This approach considered the PIP and
presented an optimal greedy algorithm for determining the
critical sections. Conceptually, a greedy approach worked
for this simpler problem because each decision could be
considered in isolation with a single goal: maximally combine
accesses into a critical section with a duration not exceeding
the blocking tolerance of higher-priority tasks. This work
built on an approach for computing the allowable duration
of non-preemptable regions in a task in the context of limited-
preemption systems [12], [13]. However, for systems with
multiple resources, the considerations expand to include dif-
ferent subsets of tasks that may incur blocking and different
ways accesses can be combined (e.g., creating nested critical
sections).

While there is limited prior work on combining resource
accesses into critical sections in a manner that ensures schedu-
lability, other problems exhibit related characteristics. The
segmented self-suspension task model [9] considers each
task to comprise alternating segments of computation and
self-suspension. Modeling self suspensions explicitly enables
more accurate representation of I/O handling, computations
offloaded to a hardware accelerator, etc. As mentioned above,
work on non-preemptive regions (e.g., [5], [7], [12], [13]) also
shares some similarities; the non-preemptive execution of a
task imposes delays on other tasks similar to the blocking that
results from a resource access protocol. The mechanisms and
the sets of impacted tasks may differ, but both problems must
consider the tradeoffs within a task system as a whole.

VI. CONCLUSION

In this paper, we express the critical-section granularity
problem as an optimization problem. We present formulations
for systems with a single shared resource and with multiple
resources accessed in a non-nested manner, and we discuss
the challenges that arise when generalizing this problem to
multiple nested resource accesses. We additionally evaluate

our formulation for a single resource in terms of the size and
runtime of the problem using the Gurobi solver.

In the future, we will expand our formulation to enable
optimization problems with nested accesses. Additionally, we
plan to continue our evaluation to include more variance in
task parameters and task set sizes, as well as to evaluate task
sets with both non-nested and nested shared-resource accesses.
We also plan to explore the connections to related problems
in more depth.

REFERENCES

[1] SchedCAT: Schedulability test collection and toolkit. http://www.
mpi-sws.org/\∼bbb/projects/schedcat.

[2] Tanya Amert and Catherine E Nemitz. Taking one for the team: Trading
overhead and blocking for optimal critical-section granularity with a
shared gpu. In Proceedings of the 32nd International Conference on
Real-Time Networks and Systems, 2024.

[3] Neil C Audsley, Alan Burns, Mike F Richardson, and Andy J Wellings.
Hard real-time scheduling: The deadline-monotonic approach. IFAC
Proceedings Volumes, 24(2):127–132, 1991.

[4] Sanjoy Baruah and Pontus Ekberg. An ilp representation of response
time analysis. Technical report, Technical Report., 2021. URL: https://
research.engineering.wustl.edu/∼baruah/Submitted/2021-ILP-RTA.pdf.

[5] Marko Bertogna, Orges Xhani, Mauro Marinoni, Francesco Esposito,
and Giorgio Buttazzo. Optimal selection of preemption points to
minimize preemption overhead. In Proceedings of the 23rd Euromicro
Conference on Real-Time Systems, pages 217–227, 2011.

[6] Björn B Brandenburg. Scheduling and Locking in Multiprocessor Real-
time Operating Systems. PhD thesis, University of North Carolina at
Chapel Hill, Chapel Hill, NC, USA, 2011.

[7] Reinder J Bril, Johan J Lukkien, and Wim FJ Verhaegh. Worst-case
response time analysis of real-time tasks under fixed-priority scheduling
with deferred preemption. Real-Time Systems, 42:63–119, 2009.

[8] Giorgio C Buttazzo. Hard real-time computing systems: Predictable
scheduling algorithms and applications, volume 24. Springer Science
& Business Media, 2011.

[9] Jian-Jia Chen, Georg von der Brüggen, Wen-Hung Huang, and Cong Liu.
State of the art for scheduling and analyzing self-suspending sporadic
real-time tasks. In Proceedings of the 23rd IEEE International Confer-
ence on Embedded and Real-Time Computing Systems and Applications,
pages 1–10. IEEE, 2017.

[10] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2024.
URL: https://www.gurobi.com.

[11] Lui Sha, Ragunathan Rajkumar, and John P Lehoczky. Priority in-
heritance protocols: An approach to real-time synchronization. IEEE
Transactions on Computers, 39(9):1175–1185, 1990.

[12] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Bounding the max-
imum length of non-preemptive regions under fixed priority scheduling.
In Proceedings of the 15th IEEE International Conference on Embedded
and Real-Time Computing Systems and Applications, pages 351–360.
IEEE, 2009.

[13] Gang Yao, Giorgio Buttazzo, and Marko Bertogna. Feasibility analysis
under fixed priority scheduling with limited preemptions. Real-Time
Systems, 47(3):198–223, 2011.

