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Beyond worst case: a line of research in the algorithm community
• Access to (machine learning) predictions on problem parameters
• No assumption on the quality of the prediction

• Line of research initiated by [Lykouris, Vassilvitskii, ICML 2018], [Kraska, Beutel, Chi, 
Dean, Polyzotis, SIGMOD 2018] 

Learning-Augmented Algorithms

Desired properties
Consistency: better than worst case if prediction errors are small
Robustness: bounded worst-case for arbitrary predictions
Smoothness: graceful degradation with the error
Learnability : good values of the predicted quantity can be learnt 



A vibrant area  
https://algorithms-with-predictions.github.io/    [Lindermayr, Megow]

https://algorithms-with-predictions.github.io/
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BINARY SEARCH 
Search items in  an ordered array with n items:

Given an ordered array
• search 23

Binary search
• cost O(log2 n)

Learning-Augmented Algorithms: search an array

Question: is there an algorithm A such that given a prediction of the index of 
the searched item A has constant cost if the prediction is good and O(log2 n) 
cost if the prediction is bad?



Finding a book in the library



Finding a book in the library
Books are usually ordered in alphabetical ordering of authors 

Search
 Author: Al-Khwārizmī
 Book Al-Jabr   (820 CE)
 - the term algebra
 comes from this book

 Will you use 
 binary search? 



Search an ordered array
• Small items are in first positions; large items in last positions
• Prediction: given the searched value guess its  position

Question: is there an algorithm A such that
• A has constant cost if the prediction is good and same cost of 

binary search O(log n) cost if the prediction is bad?
• Can we smoothely bound the cost of A between constant and 

logarithm as a function of the quality of the prediction?

Learning-Augmented Algorithms: search an array



Search an ordered array
• Small items are in first positions; large items in last positions
• Prediction: given the searched value guess its  position

Question: is there an algorithm A such that
• A has constant cost if the prediction is good and same cost of 

binary search O(log n) cost if the prediction is bad?  YES
• Can we smoothely bound the cost of A between constant and 

logarithm as a function of the quality of the prediction?  YES

Learning-Augmented Algorithms: search an array



Learning augmented algorithm [M. Mitzenmacher, S. Vassilvitskii 2022]
• Given item q and a predictor h, let h(q) be the  predicted position
A simple approach
1. first probe the location A[h(q)] using the predictor
2. if q is not found there, we know whether it is smaller or larger. 

Suppose q is smaller than the element in A[h(q)] and the array is 
sorted in increasing order. 

3. Probe elements at h(q) - 2, (h(q) – 2)- 4, (h(q) - 2 - 4) - 8, and so on, 
until an element larger than q in position p(q) is found (or the end of 
the array is reached). 

4. Apply binary search on the interval [h(q), p(q)] that’s guaranteed to 
contain q (if it exists). 

Learning-Augmented Algorithm: search an array



Search an array: search 2, predicted position 9

2 5 8 12 16 23 38 56 72 91

2 5 8 12 16 23 38 56 72 91

2 5 8 12 16 23 38 56 72 91

2 5 8 12 16 23 38 56 72 91

2 5 8 12 16 23 38 56 72 91

Algorithm 
• check items at increased 

distance from the predicted 
position

• the distance doubles at each 
step unless one end of the array 
is reached

• until 
• The queried item is found 
• Or an item smaller than the 

queried item  is tested; in 
this case binary search is 
done in a subarray

0         1           2        3           4        5          6         7          8          9

2 log N +1  is the worst case cost in 
an array of N items 



Learning augmented algorithm [M. Mitzenmacher, S. Vassilvitskii 2022]
• Given item q and a predictor h, let h(q) be the  predicted position
• If not found  proceed via doubling binary search starting from h(q)

Analysis:  Let q be the item we search 
• h(q) = predicted position  p(q) = effective position
• error µ = |h(q) - p(q)|  distance between effective and predicted pos.
• Learning augmented algorithm : O(log µ)  robust and smooth

Results:
• Consistent: perfect predictions recover constant lookup times
• Robust: if predictions are bad, not (much) worse than usual binary search
• Smoothness: the complexity increase with the log of the error

Learning-Augmented Algorithm: search an array
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Minimize Sum of  Completion Times

Input: set of jobs with processing requirements pi 
Objective: Minimize sum of completion times Si Ci 
All jobs are released at time 0 and processing times are known. 

Optimal Schedule
Shortest Processing Time first (SPT) [Smith 1956] 
easy extensions 
• jobs released over time: Shortest Remaining Processing Time first
• weighted case: order jobs according to the ratio weight/processing 

time



Minimize Sum of  Completion Times

Input: set of jobs with processing requirements pi 
Objective: Minimize sum of completion times Si Ci 

Processing times are unknown. 
We cannot expect to find the optimal solution. 
An online algorithm is ρ-competitive if it achieves, for any input instance, 
a solution of cost within a factor ρ of the optimal cost: 
• Alg(I) ≤ ρ · Opt(I), for any input I. 

• Round-Robin (RR) is 2-competitive for minimizing Si Ci on a single 
machine, and this is best-possible. [Motwani, Phillips, Torng 1994] 



Minimize Sum of  Completion Times: prediction

Toy example  [Mitzenmacher] 

• Two types of jobs, n short jobs (lenght S) and n long jobs (length L)
• Jobs are released at time 0
• Goal:  Minimize Sum of  Completion Times on a uniprocessor
• SRPT: If we know the sizes, put short jobs first

sum of completion times is 
n(n+1) S/2  +  n(n+1)/2 L 2 + n2 S      ~ n2 S/2 + n2 L/2  + n2 S

short jobs long jobs



Minimize Sum of  Completion Times

n short jobs (lenght S) and n long jobs (length L) are released at time 0
Goal:  Minimize Sum of  Completion Times on a uniprocessor
If we know the sizes, put short jobs first sum of completion times (SRPT)

~ n2 S/2 + n2 L/2 +  n2 S
If we don’t know the sizes, randomize job order: 
• about half of the jobs are in the wrong place (long jobs in the first half 

and short jobs in the second half)
expected sum of completion times  is   
~ n2 S /2 +  n2 L /2  +  n2( S + L) /2

• Difference between optimal and randomized solution:   ~ n2( L – S ) /2



Toy example: use of prediction
n short jobs (lenght S) and n long jobs (length L) are released at time 0
Goal:  Minimize Total Waiting Time on a uniprocessor
• If we know the sizes sum of completion times is  ~  n2 S/2 + n2 S + n2 L/2 
• Suppose we have a predictor that can predict whether jobs are short or 

long
short predicted  jobs are first (in random order) 

• If jobs are misclassified with probability p (short jobs) and q (long jobs) 
expected sum of completion times  
~  n2 S/2 +  n2 L/2  +  n2 (S + (p+q)(L-S)/2)

• Difference between clairvoyant and algorithm using prediction
~ n2 (p+q) (L-S)/2



Toy Example: consistency,  robustness

Difference between clairvoyant and algorithm using prediction
~ n2 (p+q) (L-S)/2

• Consistency:    Clarvoyant case:  p=q=0
~ n2 (p+q) (L-S)/2   = 0 algorithm is optimal

• Robustness:   Worst case: random prediction:    p=q=0.5 
~ n2 (p+q) (L-S)/2   = n2 (L-S)/2 algorithm behaves as 

classical  randomized 
algorithm

• Smoothness:   The ratio between algorithm and optimum is bouded by 
1 + (p+q) ( L/S − 1)/2



Minimize flow time: Jobs are released over time

ri release time, known processing  time pi

Objective function: 
minimize weighted flow time  Si (Ci – ri)   Ci is  the completion time of job i
Clarvoyant (Processing times are known at release times):  SRPT
• 1 machine: SRPT is optimal 
• m machines : SRPT optimal competitive ratio O(min (log (n/m), log P)) [P =  

max processing time]
Non clairvoyant: Randomized MultiLevel Feedback (RMLF)
• 1 machine: RMLF is optimal competitive O(log n)
• m machines : RMLF is O((log n) min(log (n/m),log P))



Minimize flow time: Jobs are released over time
General processing time:    we have a predictor  pi on the actual 
processing time ai of job i
Suppose you use SRPT and execute predicted short jobs first:
• If prediction is smaller than real execution             you may execute a 

job whose predicted remaining processing time is 0
• If keep on executing it then you may delay too many jobs (if the 

prediction for this single job is very bad but exact for all other jobs)
• On the other side you would like to limit the number of jobs that 

started execution and are not completed (if for many jobs the 
prediction is slightly wrong and the error is small)



Minimize flow time with prediction
jobs are defined by ri release time, pi, processing  time, weight wi
Objective: minimize Si wi (Ci – ri),  Ci is completion time  of job i
Prediction: Assume to have a prediction on pi let µ to be the error 

Many papers
• 1 machine, m identical machines, m unrelated machines
• Weighted,  unweighted
• Different definition of error parameter; example:  if p is predicted 

execution and p* is the real execution  then p* is at least p/ µ and at most 
µ p (i.e. µ = maxi (p/p*, p*/p))

Many papers: [Im et al. 2018] [Purohit et al. 2018] [Wei 2020] [Azar et al. 
2021][Lindermayr, Megow 2022] [Zhao et al. 2022] ….
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Schedule with minimum energy requirement 

Toy example:
• One job, deadline D, predicted execution time P, wcet W, release time 0
• Our goal is to minimize energy consumption
• Let s(t) be the speed the processors is running at time t then the 

required energy is 
  ⎰ s(t)a dt for a > 0 (a is assumed to be ≥ 2)

Energy minimization



One job: P predicted execution time P, A actual exeution. time, W wcet,           
D deadline
Let s(t) be the speed the processors is running at time t then the required 
energy is 

  ⎰ s(t)a dt for a > 0 (parameter a is assumed to be ≥ 2)
Assume you do not trust the prediction 

• To complete the job in the worst case requires speed s =
!
"
	

• If A is the actual execution time then execution   requires time  
#
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• the energy requirement  E(A)   is 
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!
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Energy minimization:  minimal example

a -1a a



P predicted execution time P, A actual exec. time, W wcet,  D deadline
Algorithm 
ALG: Trust the prediction and up to time tv  run at speed s’ =

%
	 tv 

< s =
!
"

1. If A ≤ P then the job completes by time tv and energy requirement EALG(A) is

 EALG(A) = A !
tv

 

2. If A > P then  we need to run at higher speed 
!"#
$"tv

 in [tv , D]  (ALG is late wrt 
off line algorithm); 

       If you trust the prediction the energy consumption EP(A)  is 

 EP(A) = P P
tv

 + (W-P) !"#
$"%

 

Energy minimization: minimal example

a 

a a 



We need to fix the virtual deadline t

Algorithm’s energy requirementi wrt off-line (no trust to prediction)
•  ALG requires less energy if A ≤ P  
• ALG requires more energy if A > P

If the algorithm should be  g robust then it should require at most g times the 
energy of the clarvoyant optimum in all possible cases

Since energy increases non lineraly with speed it is not hard to see that the bad 
case occurs when A= W (actual time = worst case time) 

Energy minimization: minimal example



Fix the virtual deadline t that minimizes energy
• Since energy increases non lineraly with speed then the bad case occurs 

when A= WC (actual time = worst case time) 
• It follows that the virtual deadline is equal to the largest value of t s.t.
 EALG (W) ≤ g E (W) 
• Equivalently

  P P
tv

 + (W-P) "#!
$#%

	 ≤ g A "
$

 

• If a = 2 then we obtain a quadratic expression that is easy to solve 

Energy minimization: minimal example

a -1a -1a 



Schedule with minimum energy requirement 1 server 
• a set J of n jobs; Input a set J of jobs: job i ∈	J is defined by (i, ri , pi)
• A prediction $J of the set of jobs: ( ̂𝚤, 'ri , (pi ) predicted values
• Each job must be finished Di time units after arrival

What metric to use to compare predicted worklooad and real one?
• Simplest metrics || . ||1   ,  || . ||2 do not give enough information
• The exponent should take into account a
• err = || Wpred - Wreal ||a

Jobs released over time

a



Simple case 
assume Di = D and ri = i for all i [Bamas, et al.2020]

A first learning  Algorithm
1. Compute offline the optimal solution for the prediction $J
2. At time instant t, t=1,2,…. 
•  if job (i, ri , pi) is released and (i, ri , pi)  𝜖	 J ∩ +	J   then do nothing
•  if job (i, ri , pi) is mispredicted then increase/decrease speed:                  

increase (decrease) speed in case of underprediction 
(overprediction)

Jobs released over time



Example

•  Periodically the server receives 
a job to execute
• Each job comes with some 

workload  wi that must be 
finished within D milliseconds 

after arrival
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

predicted
workload

speed time

time



Example

•  Every millisecond, the server 
receives a job to execute.
• Each job comes with some 

workload  wi that must be 
finished within Di milliseconds 

after arrival.
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

Predicted 
workload

speed

time

time
Predicted 
optimum



Example

workload

speed

time

time

•  Periodically the server receives 
a job to execute
• Each job comes with some 

workload  wi that must be 
 finished within Di milliseconds 
after arrival
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

Prediction:
good



Example

•  Periodically the server receives 
a job to execute
• Each job comes with some 

workload  wi that must be 
 finished within Di milliseconds 
after arrival
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

workload

speed

time

time

Prediction:
high



Example

•  Periodically the server receives 
a job to execute
• Each job comes with some 

workload  wi that must be 
 finished within Di milliseconds 
after arrival
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

time

workload

speed

time

Prediction:
low



Example

•  Periodically the server receives 
a job to execute
• Each job comes with some 

workload  wi that must be 
 finished within Di milliseconds 
after arrival
• The server can choose its 

processor’s speed s(t) at will.
• The goal is to minimize the 

energy
    ⎰ s(t)a dt for a > 0

workload

speed

time

time



Predicted workload   Workload 

Predicted solution   Optimal solution

Perfect consistency 
OK

But 

Not consistent 



The algorithm is consistent BUT is not robust
• How to make it robust?

Energy minimization

Average out the speed to 
avoid huge peaks

• Generalize the simple 
case to general ri and Di

[Bamas et al. 2020]



Input
• a set J of jobs and a  prediction $J  to be scheduled  on one server
• an arbitrary quality of service function F(J,S),  J set of jobs, S schedule

Given a schedule S , E(S) is its energy requirement minimize F(J,S) + E(S) 
• Note jobs can have a deadline: if a job in J does not complete by its 

deadline in schedule S  then F(J,S)= ∞

General Energy-efficient Scheduling [Balkansky et al. 2024] 
• consistency and robustness bounds that are function of a (energy 

exponent) and of a parameter l , 0< l ≤ 1 and their error parameter

General Energy-efficient Scheduling (GES)



Input a set J of jobs: job i ∈	J is defined by (i, ri , pi)
• a set J of n jobs; job i has release time ri and processing time pi
• an arbitrary quality of service function F(J,S),  J set of jobs, S schedule
Goal minimize F(J,S) + E(S)   E(S) energy requirement of schedule S
• Prediction error µ: let J + = J ∩ $J    be the set of correctly predicted jobs

 µ = max{OPT(&J	\ J+), OPT('J \ J+)}
OPT( &J	) 

max{OPT(J \ J+), OPT(Jˆ \ J+)} is the maximum between 
• the optimal cost of scheduling the jobs J \ J+  that arrived but were not 

predicted
• the cost of the jobs  +J \ J+ that were predicted to arrive but did not arrive

General Energy-efficient Scheduling (GES)



Algorithm TPE: uses  an OfflineAlg and OnlineAlg 
Proceeds in two phases
1. ignore the predictions: until time tl runs the OnlineAlg over the true jobs J≤t 

that have been released 
2. use the predictions: after time tl runs two algorithms (summing speed) 

2.1  the OfflineAlg for remaining jobs that were correctly predicted             
(i.e., J≥tλ ∩ &J ≥tλ)
2.2 the OnlineAlg for uncompleted jobs in Phase 1 and not predicted jobs 
released in the second phase

Theorem. For any  λ ∈ (0, 1), TPE with a c-competitive algorithm 
OnlineAlg and an optimal offline algorithm OfflineAlg is 1 + c 2α λ(1/α)

General Energy-efficient Scheduling (GES) [Balkansky et al.]



Theorem. For any  λ ∈ (0, 1), TPE with a c-competitive algorithm 
OnlineAlg and an optimal offline algorithm OfflineAlg is 1 + c 2α λ(1/α)  

robust

Note: robustness  > 1  implies  that when the prediction is perfect then 
algorithm does not necessarily  finds the  optimal solution

Theorem For the objective of minimizing total energy plus (non-weighted) 
flow time, there is no algorithm that is 1-consistent and o( 𝑛)-robust, 
even if all jobs have unit-size work and if J ⊆ $J 

General Energy-efficient Scheduling (GES) [Balkansky et al.]



An implicit deadline sporadic task ti is defined by three parameters:
• worst-case execution time Ci 

• period Ti the minimum time between successive triggering of task ti 

In many cases estimating Ci  and Ti is challenging: safety critical often assign 
• a large safe upper bound value to the worst execution time parameter
• a small safe lower bound value to the period parameter
This conservative approach often leads to underutilization of resources when 
jobs are released much further apart

Previous results on energy minimization assume that speed can 
assume any vlaure (and is unbounded. 

Implicit Sporadic task system: predicting the period



Use prediction of the period deadline task systems 
[Baruah, Ekberg, Lindermayr, MS, Megow, Stougie 2024]

Given a system G = Ui {ti = (Ci, Ti, Pi)} to be processed on one machine
• Ci the WCET,  Ti deadline, Pi the period 

We assume that each periodic task’s period parameter is given two values: 
• a conservative one that is guaranteed to be safe
• A more optimistic one that is very likely to be safe but it is not guaranteed to 

be safe

Assume that maximum speed is bounded
Goal: find an algorithm that 
1. Runs at lower speed  if predictions are correct
2. is safe if predictions are wrong

Implicit Sporadic task system: predicting the period



Assume the maximum processor speed is 1

The Run-time scheduling algorithm  
• Starts running the processor with speed s0 , s0 < 1 (we implicitly 

assume predictions are good)
• Monitors job-release time to check whether successive jobs of any 

task have been released sooner than Pi 

• If so increases the processor speed up to its maximum; it remains at 
speed 1 until the processor is idle; at that instant returns to speed s0 

Question:  What is the minimum value of s0 that ensures the run-time 
algorithm always meets all job deadlines?

Run-Time Algorithm



Computing  s0  
What is the minimum value of s that ensures the run-time algorithm 
always meets all job deadlines under all circumstances?
1. we derive a necessary condition for a deadline miss for a given initial 

speed s0 
2. by negating this condition we obtain a formula to assign to s0 a value 

that guarantees no deadline miss

Run-Time Algorithm: computing s0



A necessary condition for a deadline miss for a given initial speed s0 
Assume we start with speed s0. Let
• td be the earliest time at which a deadline miss can possibly occur
• tf < td be the earliest time  at which a prediction failure occurred
• di(tf ,td) be a tight upper bound on the cumulative execution by jobs of 

task i in the interval [tf ,td]

1.      We prove that if  we run at speed s0 in [0, tf] and speed 1 in [tf, td]         
  a failure at tf implies  Si di(tf ,td) > s0 tf + 1 (td - tf) 

2.       Hence if  s0 > {[Si di(tf ,td)] - (td - tf)} / tf for all values tf , td  
  no deadline is missed

Run-Time Algorithm: computing s0



Computing s0 the minimum value of s that ensures correctness
We have shown that if

  s0 > {[Si di(tf ,td)] - (td - tf)} / tf for all values tf , td 

then there is no deadline miss

How to compute [Si di(tf ,td) - (td - tf)] / tf for all values tf , td ?
• Given task ti , and time instants tf , td then di(tf ,td) can be computed 

in constant time

• Hence [Si di(tf ,td) - (td - tf)] / tf can be computed in 
pseudopolynomial time for all values tf , td (we assume release instants 
and parameter to be integer) 

Computing s0 -  running time



Computing s0 the minimum value of s that ensures correctness
• How to compute [Si di(tf ,td) - (td - tf)] / tf for all values tf , td

We propose an approximation algorithm based on 
1. Determining  for each pair of values  tf , td the worst case scenario
2. Using Albers-Smolka approximation of the DBF function
3. Discretizing the considered values to reduce the number of 

interesting values (the running time increases with the quality of the 
approximation)

Computing s0 – approximation algorithm



Computing s0 the minimum value of s that ensures correctness
2. Using Albers-Smolka approximation of the DBF function

Run-Time Algorithm

Albers-Smolka 
DBF (blue) and 
AS-approximation 
of DBF (red) when 
a misprediction 
occurs at tf

Albers-Smolka 
DBF (blue) and 
AS-approximation 
of DBF (red)



2. Using Albers-Smolka approximation of the DBF function
3. Discretizing the considered values to reduce the number of interesting 

values; 

Run-Time Algorithm

Albers-Smolka 
Black 
Approximation of   
DBF  k= 3

For a given integer k traces the dbf for 
the first k steps and its approximation 
for subsequent steps

Large k                higher computation 
cost and  better precision

Let sk be the speed computed by the 
algorithm with parameter k 
     (1 – 2/k) sk  is a lower bound 
on minimal speed s0



• Results can be extended to constrained deadline task systems
•We do not consider 
• smoothness 
•multiprocessors

Predicting the period



•Machine learning is the present
• Learning-augmented seems like a potentially general and 

powerful paradigm to go beyond worst case analysis

• Learning augmented algorithms and real time scheduling
• What problems are amenable to advice from learning algorithms?
• Which data can be learned?
• What should be predicted – is it realistic?
• Are there minimal prediction  that are practically useful (i.e. allow 

to obtain better bounds and have good  robustness)?
• What is a reasonable (for the community) error measure (that 

allows to prove good bounds)? 

Conclusions and questions



Thanks for your attention!
Questions?    


